ssim c++怎么写
时间: 2023-08-23 09:04:07 浏览: 144
C++SIM
4星 · 用户满意度95%
在C++中实现SSIM(结构相似性指标)可以按照以下步骤进行操作:
1. 首先,你需要计算两幅图像的亮度、对比度和结构。可以使用OpenCV库提供的函数来完成这些计算。以下是一个示例代码:
```cpp
#include <opencv2/opencv.hpp>
double calculateSSIM(const cv::Mat& img1, const cv::Mat& img2)
{
cv::Mat img1_gray, img2_gray;
cv::cvtColor(img1, img1_gray, cv::COLOR_BGR2GRAY);
cv::cvtColor(img2, img2_gray, cv::COLOR_BGR2GRAY);
double C1 = 6.5025, C2 = 58.5225; // 根据论文中的推荐值
int d = CV_32F;
cv::Mat img1f, img2f;
img1_gray.convertTo(img1f, d);
img2_gray.convertTo(img2f, d);
cv::Mat img1_squared = img1f.mul(img1f);
cv::Mat img2_squared = img2f.mul(img2f);
cv::Mat img1_img2 = img1f.mul(img2f);
cv::Mat mean1, mean2;
cv::GaussianBlur(img1f, mean1, cv::Size(11, 11), 1.5);
cv::GaussianBlur(img2f, mean2, cv::Size(11, 11), 1.5);
cv::Mat mean1_squared = mean1.mul(mean1);
cv::Mat mean2_squared = mean2.mul(mean2);
cv::Mat mean1_mean2 = mean1.mul(mean2);
cv::Mat sigma1_squared, sigma2_squared, sigma12;
cv::GaussianBlur(img1_squared, sigma1_squared, cv::Size(11, 11), 1.5);
cv::subtract(sigma1_squared, mean1_squared, sigma1_squared);
cv::GaussianBlur(img2_squared, sigma2_squared, cv::Size(11, 11), 1.5);
cv::subtract(sigma2_squared, mean2_squared, sigma2_squared);
cv::GaussianBlur(img1_img2, sigma12, cv::Size(11, 11), 1.5);
cv::subtract(sigma12, mean1_mean2, sigma12);
cv::Mat ssim_map;
cv::divide((2 * mean1_mean2 + C1) * (2 * sigma12 + C2), (mean1_squared + mean2_squared + C1) * (sigma1_squared + sigma2_squared + C2), ssim_map);
cv::Scalar mssim = cv::mean(ssim_map);
return (mssim.val[0] + mssim.val[1] + mssim.val[2]) / 3;
}
int main()
{
cv::Mat img1 = cv::imread("image1.jpg");
cv::Mat img2 = cv::imread("image2.jpg");
double ssim = calculateSSIM(img1, img2);
std::cout << "SSIM: " << ssim << std::endl;
return 0;
}
```
请注意,上述代码使用了OpenCV库来进行图像处理和计算。确保你已经安装了OpenCV库,并且在编译时链接了正确的库文件。代码中的两幅图像被假设为RGB彩色图像,如果你的图像是灰度图像,可以省略颜色空间转换的步骤。
2. 在代码中,首先将两幅图像转换为灰度图像。然后,计算亮度、对比度和结构的指标。接下来,使用高斯滤波器平滑图像,并计算相关的方差。
3. 最后,根据上述公式计算SSIM值,并返回结果。
这只是一个简单的示例代码,你可以根据自己的需求进行修改和改进。希望这能对你有所帮助!
阅读全文