基于Python的图像去雾项目代码实现
时间: 2024-04-12 08:24:52 浏览: 124
基于Python的图像去雾项目的代码实现可以分为以下几个步骤:
1. 导入所需的库:
```
import cv2
import numpy as np
```
2. 加载图像:
```
img = cv2.imread('input.jpg')
```
3. 预处理:
```
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
```
4. 估计大气光:
```
dark_channel = np.min(gray, axis=2)
top_percent = 0.001
pixels = dark_channel.size
num_pixels = int(pixels * top_percent)
dark_channel_flat = dark_channel.flatten()
dark_channel_flat_sorted = np.sort(dark_channel_flat)
atmospheric_light = np.mean(dark_channel_flat_sorted[-num_pixels:])
```
5. 估计透射率:
```
window_size = 15
omega = 0.95
mean_filter = cv2.blur(gray, (window_size, window_size))
transmission = 1 - omega * dark_channel / mean_filter
```
6. 修复透射率:
```
guided_filter = cv2.ximgproc.createGuidedFilter(gray, window_size, eps)
transmission_filtered = guided_filter.filter(transmission)
```
7. 恢复原始图像:
```
t = np.maximum(transmission_filtered, 0.1)
restored = np.empty_like(img)
for i in range(3):
restored[:, :, i] = (img[:, :, i] - atmospheric_light) / t + atmospheric_light
restored[:, :, i] = np.clip(restored[:, :, i], 0, 255)
```
8. 保存结果:
```
cv2.imwrite('output.jpg', restored)
```
以上是一个简单的基于Python的图像去雾项目的代码实现。你可以根据需要进行调整和优化。
阅读全文