细化水准计算过程,要求建立误差方程,构建法方程并解算,而且按照 以上读取数据方法,最后进行未知点高程计算与精度估计,重新给我一份完整的水准网间接平差代码

时间: 2024-04-12 18:30:56 浏览: 14
以下是一个完整的水准网间接平差的代码示例: ```cpp #include <iostream> #include <fstream> #include <vector> #include <cmath> #include <Eigen/Dense> using namespace Eigen; // 观测高差类的设计 class CElvDif { private: double _value; // 观测值 double _weight; // 权重 long _startPoint; // 起始点编号 long _endPoint; // 终点编号 public: // 构造函数 CElvDif(double value, double weight, long startPoint, long endPoint) : _value(value), _weight(weight), _startPoint(startPoint), _endPoint(endPoint) {} // 获取观测值 double getValue() const { return _value; } // 获取权重 double getWeight() const { return _weight; } // 获取起始点编号 long getStartPoint() const { return _startPoint; } // 获取终点编号 long getEndPoint() const { return _endPoint; } }; // 水准点类的设计 class CLevelPoint { private: long _index; // 水准点编号 double _eleValue; // 高程值 double _dv; // 高程值改正数(初始化为 0) bool _isKnown; // 是否为已知点 public: // 构造函数 CLevelPoint(long index, double eleValue, bool isKnown) : _index(index), _eleValue(eleValue), _dv(0.0), _isKnown(isKnown) {} // 获取水准点编号 long getIndex() const { return _index; } // 获取高程值 double getEleValue() const { return _eleValue; } // 设置高程值 void setEleValue(double value) { _eleValue = value; } // 获取高程值改正数 double getDv() const { return _dv; } // 设置高程值改正数 void setDv(double value) { _dv = value; } // 是否为已知点 bool isKnown() const { return _isKnown; } }; // 水准平差计算类的设计 class CElevationNet { private: int numElvDif; // 观测值(高差)总数 int numPoints; // 控制网中点的数目 int numKnPoint; // 控制网中已知点的数目 double sigma0; // 验前单位权中误差 std::vector<CElvDif> _edVec; // 观测值数组 std::vector<CLevelPoint> _lpVec; // 高程值数组 public: // 构造函数 CElevationNet() : numElvDif(0), numPoints(0), numKnPoint(0), sigma0(0.0) {} // 读取数据文件 bool readDataFile(const std::string& filename) { std::ifstream file(filename); if (!file.is_open()) { std::cout << "Failed to open file: " << filename << std::endl; return false; } file >> numPoints >> numKnPoint >> numElvDif >> sigma0; // 读取已知点的信息 for (int i = 0; i < numKnPoint; i++) { long index; double eleValue; file >> index >> eleValue; _lpVec.push_back(CLevelPoint(index, eleValue, true)); } // 读取未知点的信息 for (int i = 0; i < numPoints - numKnPoint; i++) { long index; double eleValue; file >> index >> eleValue; _lpVec.push_back(CLevelPoint(index, eleValue, false)); } // 读取观测高差的信息 for (int i = 0; i < numElvDif; i++) { double value, weight; long startPoint, endPoint; file >> value >> weight >> startPoint >> endPoint; _edVec.push_back(CElvDif(value, weight, startPoint, endPoint)); } file.close(); return true; } // 水准平差计算 void elevationAdjustment() { // 构建法方程系数矩阵A和常数项b MatrixXd A(numElvDif + numKnPoint, numPoints - numKnPoint); VectorXd b(numElvDif + numKnPoint); // 初始化A和b A.setZero(); b.setZero(); // 构建误差方程 int row = 0; for (const auto& elvDif : _edVec) { long startPoint = elvDif.getStartPoint(); long endPoint = elvDif.getEndPoint(); double weight = elvDif.getWeight(); double value = elvDif.getValue(); if (_lpVec[startPoint - 1].isKnown() && _lpVec[endPoint - 1].isKnown()) { // 已知-已知高差观测 double eleStart = _lpVec[startPoint - 1].getEleValue(); double eleEnd = _lpVec[endPoint - 1].getEleValue(); double residual = eleStart - eleEnd + value; b(row) = residual * weight; } else { // 未知-已知高差观测 if (_lpVec[startPoint - 1].isKnown()) { // 起点为已知点 A(row, startPoint - numKnPoint - 1) = 1.0; b(row) = _lpVec[startPoint - 1].getEleValue() + value; } else if (_lpVec[endPoint - 1].isKnown()) { // 终点为已知点 A(row, endPoint - numKnPoint - 1) = -1.0; b(row) = _lpVec[endPoint - 1].getEleValue() - value; } } row++; } // 构建法方程和常数项 for (int i = 0; i < numKnPoint; i++) { A(row, i) = 1.0; b(row) = _lpVec[i].getEleValue(); row++; } // 解算法方程 VectorXd x = A.jacobiSvd(ComputeThinU | ComputeThinV).solve(b); // 更新未知点的高程值 for (int i = numKnPoint; i < numPoints; i++) { _lpVec[i].setEleValue(x(i - numKnPoint)); } } // 输出结果 void printResults() const { std::cout << "Elevation Adjustment Results:" << std::endl; // 输出已知点的高程值 std::cout << "Known Points: " << std::endl; for (const auto& point : _lpVec) { if (point.isKnown()) { std::cout << "Point " << point.getIndex() << ": " << point.getEleValue() << std::endl; } } // 输出未知点的高程值 std::cout << "Unknown Points: " << std::endl; for (const auto& point : _lpVec) { if (!point.isKnown()) { std::cout << "Point " << point.getIndex() << ": " << point.getEleValue() << std::endl; } } // 计算未知点高程值的精度估计 double sigma_a = sqrt(sigma0 * sigma0 / (numElvDif - numPoints + numKnPoint)); std::cout << "Standard Deviation: " << sigma_a << std::endl; } }; int main() { CElevationNet elevationNet; // 读取数据文件 if (!elevationNet.readDataFile("data.txt")) { return 0; } // 进行水准平差计算 elevationNet.elevationAdjustment(); // 输出结果 elevationNet.printResults(); return 0; } ``` 在这个示例代码中,首先通过读取数据文件,将已知点和观测高差信息存储到相应的类对象中。然后,根据误差方程构建法方程系数矩阵A和常数项b,并利用最小二乘法解算法方程,得到未知点的高程值。最后,根据计算结果输出已知点和未知点的高程值,并计算未知点高程值的精度估计。 请注意,示例代码中的水准平差计算部分根据误差方程进行了简化,具体的平差算法和精度估计方法需要根据实际需求和平差方法进行选择和实现。这里仅给出了一个基本的框架,具体的实现需要根据实际需求进行调整和完善。同时,示例代码中使用了Eigen库来进行矩阵运算,需要在编译环境中安装并配置Eigen库。

相关推荐

最新推荐

recommend-type

基于20984-2007 风险评估计算模型的研究.pdf

引入安全措施有效性系数,通过对风险资产的价值、威胁和脆弱性细化量化分析,根据相乘法原理计算风险值,使风险计算值更加科学和可靠,进一步明确风险控制措施对风险控制的有效性影响,为风险分析计算提出一种新的...
recommend-type

面向C-V2X的多接入边缘计算服务能力开放和接口技术要求.docx

车路协同场景是MEC与C-V2X融合场景中的重点研究内容,涵盖...因此本文以当前主流车联网边缘计算系统架构为基础,着重分析研究车路协同各应用场景特别是多源数据融合场景对MEC服务能力及开放接口的要求并撰写相关规范。
recommend-type

骨架提取和交叉点检测的matlab实现

本文介绍了骨架提取和交叉点检测的matlab实现,用的是中轴法,细化法检测出来的是边缘。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、