spark.sparkContext.wholeTextFiles()
时间: 2023-11-17 19:02:19 浏览: 117
spark.sparkContext.wholeTextFiles()是一个函数,它可以将指定路径下的所有文件读取为一个PairRDD,其中PairRDD的key是文件路径,value是文件内容。与textFile()函数不同,wholeTextFiles()函数将整个文件读取为一个记录,而不是将每一行读取为一个记录。这个函数可以用于读取小文件或者需要整个文件作为一个记录的情况。
举个例子,如果我们有一个文件夹包含多个文本文件,我们可以使用wholeTextFiles()函数将这些文件读取为一个PairRDD,其中每个文件的内容作为一个value,文件路径作为一个key。
下面是一个使用wholeTextFiles()函数的例子:
```scala
val rdd = spark.sparkContext.wholeTextFiles("/path/to/folder")
```
这将读取指定路径下的所有文件,并将它们作为一个PairRDD返回,其中每个文件的内容作为一个value,文件路径作为一个key。
相关问题
导入pyspark.conf,pyspark.sparkcontext,pyspark.mllib,实现SVM对于新闻的分类。数据集为多个按照类别分类的文件夹,每个文件夹下为新闻的中文正文内容,采用tf-idf对数据集进行清洗和处理,得到RDD。路径为/project/类别、文本
首先,需要在终端使用以下命令启动pyspark:
```
pyspark --master yarn --deploy-mode client
```
然后,在pyspark中进行以下操作:
1. 导入必要的库和模块
```python
from pyspark.conf import SparkConf
from pyspark.sql import SparkSession
from pyspark.ml.feature import HashingTF, IDF, Tokenizer
from pyspark.ml.classification import LinearSVC
from pyspark.ml import Pipeline
```
2. 创建SparkSession
```python
conf = SparkConf().setAppName("News Classification with SVM")
spark = SparkSession.builder.config(conf=conf).getOrCreate()
```
3. 加载数据集
```python
path = "/project/*/*"
data = spark.sparkContext.wholeTextFiles(path)
```
4. 将数据集转换为DataFrame格式
```python
df = data.toDF(["path", "text"])
```
5. 对文本进行分词和TF-IDF处理
```python
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="rawFeatures")
idf = IDF(inputCol=hashingTF.getOutputCol(), outputCol="features")
pipeline = Pipeline(stages=[tokenizer, hashingTF, idf])
model = pipeline.fit(df)
result = model.transform(df)
```
6. 将数据集划分为训练集和测试集
```python
train, test = result.randomSplit([0.8, 0.2], seed=12345)
```
7. 训练SVM模型并进行预测
```python
svm = LinearSVC(maxIter=10, regParam=0.1)
svmModel = svm.fit(train)
predictions = svmModel.transform(test)
```
8. 对预测结果进行评估
```python
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
evaluator = MulticlassClassificationEvaluator(predictionCol="prediction")
accuracy = evaluator.evaluate(predictions)
print("Accuracy = %g" % (accuracy))
```
完整代码如下:
```python
from pyspark.conf import SparkConf
from pyspark.sql import SparkSession
from pyspark.ml.feature import HashingTF, IDF, Tokenizer
from pyspark.ml.classification import LinearSVC
from pyspark.ml import Pipeline
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
conf = SparkConf().setAppName("News Classification with SVM")
spark = SparkSession.builder.config(conf=conf).getOrCreate()
path = "/project/*/*"
data = spark.sparkContext.wholeTextFiles(path)
df = data.toDF(["path", "text"])
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="rawFeatures")
idf = IDF(inputCol=hashingTF.getOutputCol(), outputCol="features")
pipeline = Pipeline(stages=[tokenizer, hashingTF, idf])
model = pipeline.fit(df)
result = model.transform(df)
train, test = result.randomSplit([0.8, 0.2], seed=12345)
svm = LinearSVC(maxIter=10, regParam=0.1)
svmModel = svm.fit(train)
predictions = svmModel.transform(test)
evaluator = MulticlassClassificationEvaluator(predictionCol="prediction")
accuracy = evaluator.evaluate(predictions)
print("Accuracy = %g" % (accuracy))
spark.stop()
```
代码:# 定义parse_news_file函数 def parse_news_file(file_path): # 读取文本文件内容 #text_file = open(file_path, 'r', encoding='utf-8') text_rdd = sc.textFile(file_path) text = ''.join(text_rdd.collect()) # 分解文件路径 parts = file_path.split('/') # 获取类别和文件名 category = parts[-2] filename = parts[-1] print(filename) # 对文本内容进行分词和过滤停用词 seg_list = jieba.cut(text) filtered_list = [word for word in seg_list if word not in stopwords] # 计算tf-idf特征 hashingTF = HashingTF() tf = hashingTF.transform(filtered_list) idf = IDF() idfModel = idf.fit(tf) tfidf = idfModel.transform(tf) # 返回LabeledPoint对象 return LabeledPoint(category, tfidf) # 获取或创建全局的SparkContext sc = SparkContext.getOrCreate() # 读取数据集,调用parse_news_file函数处理每个文件,使用LabeledPoint定义文本的类别和向量 data = sc.wholeTextFiles('hdfs://spark01:9000/project/data/*/*').map(lambda x: parse_news_file(x[0])) print("hello",data.count())报错Exception: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transformation. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.
这个错误提示说明在你的代码中使用了SparkContext,而SparkContext只能在Driver程序中使用,不能在Worker节点中使用。你可以尝试将SparkContext的创建和数据读取操作放在Driver程序中,然后使用Spark RDD的转换操作在Worker节点中进行处理。具体来说,你可以将data = sc.wholeTextFiles('hdfs://spark01:9000/project/data/*/*').map(lambda x: parse_news_file(x[0]))这一行代码放到Driver程序中。
阅读全文