transformer原始代码生成
时间: 2024-03-21 09:37:13 浏览: 109
Transformer是一种用于自然语言处理任务的深度学习模型,它在机器翻译、文本生成等任务中取得了很好的效果。下面是Transformer模型的原始代码生成的步骤:
1. 导入所需的库和模块:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
2. 定义Transformer模型的主要组件,包括Encoder、Decoder和整个Transformer模型:
```python
class Encoder(nn.Module):
def __init__(self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout):
super().__init__()
self.input_dim = input_dim
self.hid_dim = hid_dim
self.n_layers = n_layers
self.n_heads = n_heads
self.pf_dim = pf_dim
self.dropout = dropout
self.tok_embedding = nn.Embedding(input_dim, hid_dim)
self.pos_embedding = nn.Embedding(1000, hid_dim)
self.layers = nn.ModuleList([EncoderLayer(hid_dim, n_heads, pf_dim, dropout) for _ in range(n_layers)])
self.dropout = nn.Dropout(dropout)
def forward(self, src, src_mask):
batch_size = src.shape[0]
src_len = src.shape[1]
pos = torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(src.device)
src = self.dropout((self.tok_embedding(src) * math.sqrt(self.hid_dim)) + self.pos_embedding(pos))
for layer in self.layers:
src = layer(src, src_mask)
return src
class Decoder(nn.Module):
def __init__(self, output_dim, hid_dim, n_layers, n_heads, pf_dim, dropout):
super().__init__()
self.output_dim = output_dim
self.hid_dim = hid_dim
self.n_layers = n_layers
self.n_heads = n_heads
self.pf_dim = pf_dim
self.dropout = dropout
self.tok_embedding = nn.Embedding(output_dim, hid_dim)
self.pos_embedding = nn.Embedding(1000, hid_dim)
self.layers = nn.ModuleList([DecoderLayer(hid_dim, n_heads, pf_dim, dropout) for _ in range(n_layers)])
self.fc_out = nn.Linear(hid_dim, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, trg, enc_src, trg_mask, src_mask):
batch_size = trg.shape[0]
trg_len = trg.shape[1]
pos = torch.arange(0, trg_len).unsqueeze(0).repeat(batch_size, 1).to(trg.device)
trg = self.dropout((self.tok_embedding(trg) * math.sqrt(self.hid_dim)) + self.pos_embedding(pos))
for layer in self.layers:
trg, attention = layer(trg, enc_src, trg_mask, src_mask)
output = self.fc_out(trg)
return output, attention
class Transformer(nn.Module):
def __init__(self, encoder, decoder, src_pad_idx, trg_pad_idx):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.src_pad_idx = src_pad_idx
self.trg_pad_idx = trg_pad_idx
def make_src_mask(self, src):
src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)
return src_mask
def make_trg_mask(self, trg):
trg_pad_mask = (trg != self.trg_pad_idx).unsqueeze(1).unsqueeze(3)
trg_len = trg.shape[1]
trg_sub_mask = torch.tril(torch.ones((trg_len, trg_len))).bool()
trg_mask = trg_pad_mask & trg_sub_mask
return trg_mask
def forward(self, src, trg):
src_mask = self.make_src_mask(src)
trg_mask = self.make_trg_mask(trg)
enc_src = self.encoder(src, src_mask)
output, attention = self.decoder(trg, enc_src, trg_mask, src_mask)
return output, attention
```
3. 定义Transformer模型的子组件,包括EncoderLayer和DecoderLayer:
```python
class EncoderLayer(nn.Module):
def __init__(self, hid_dim, n_heads, pf_dim, dropout):
super().__init__()
self.self_attn_layer_norm = nn.LayerNorm(hid_dim)
self.ff_layer_norm = nn.LayerNorm(hid_dim)
self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout)
self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout)
self.dropout = nn.Dropout(dropout)
def forward(self, src, src_mask):
_src, _ = self.self_attention(src, src, src, src_mask)
src = self.self_attn_layer_norm(src + self.dropout(_src))
_src = self.positionwise_feedforward(src)
src = self.ff_layer_norm(src + self.dropout(_src))
return src
class DecoderLayer(nn.Module):
def __init__(self, hid_dim, n_heads, pf_dim, dropout):
super().__init__()
self.self_attn_layer_norm = nn.LayerNorm(hid_dim)
self.enc_attn_layer_norm = nn.LayerNorm(hid_dim)
self.ff_layer_norm = nn.LayerNorm(hid_dim)
self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout)
self.encoder_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout)
self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout)
self.dropout = nn.Dropout(dropout)
def forward(self, trg, enc_src, trg_mask, src_mask):
_trg, _ = self.self_attention(trg, trg, trg, trg_mask)
trg = self.self_attn_layer_norm(trg + self.dropout(_trg))
_trg, attention = self.encoder_attention(trg, enc_src, enc_src, src_mask)
trg = self.enc_attn_layer_norm(trg + self.dropout(_trg))
_trg = self.positionwise_feedforward(trg)
trg = self.ff_layer_norm(trg + self.dropout(_trg))
return trg, attention
```
4. 定义Transformer模型的其他辅助组件,包括MultiHeadAttentionLayer和PositionwiseFeedforwardLayer:
```python
class MultiHeadAttentionLayer(nn.Module):
def __init__(self, hid_dim, n_heads, dropout):
super().__init__()
self.hid_dim = hid_dim
self.n_heads = n_heads
self.head_dim = hid_dim // n_heads
self.fc_q = nn.Linear(hid_dim, hid_dim)
self.fc_k = nn.Linear(hid_dim, hid_dim)
self.fc_v = nn.Linear(hid_dim, hid_dim)
self.fc_o = nn.Linear(hid_dim, hid_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, query, key, value, mask=None):
batch_size = query.shape[0]
Q = self.fc_q(query)
K = self.fc_k(key)
V = self.fc_v(value)
Q = Q.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
K = K.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
V = V.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / math.sqrt(self.head_dim)
if mask is not None:
energy = energy.masked_fill(mask == 0, -1e10)
attention = torch.softmax(energy, dim=-1)
x = torch.matmul(self.dropout(attention), V)
x = x.permute(0, 2, 1, 3).contiguous()
x = x.view(batch_size, -1, self.hid_dim)
x = self.fc_o(x)
return x, attention
class PositionwiseFeedforwardLayer(nn.Module):
def __init__(self, hid_dim, pf_dim, dropout):
super().__init__()
self.fc_1 = nn.Linear(hid_dim, pf_dim)
self.fc_2 = nn.Linear(pf_dim, hid_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.dropout(torch.relu(self.fc_1(x)))
x = self.fc_2(x)
return x
```
这些代码片段展示了Transformer模型的主要组件和辅助组件的实现。你可以根据需要进行修改和扩展。注意,这只是一个简化的示例,实际的Transformer模型可能还包括其他组件和功能。
阅读全文