遥感影像小波变换代码

时间: 2023-08-05 12:08:25 浏览: 125
很抱歉,根据提供的引用内容,没有提到具体的遥感影像小波变换代码。引用\[1\]和引用\[3\]提到了使用小波变换和张量分解的数字水印算法,但没有提供具体的代码实现。如果您需要遥感影像小波变换的代码,建议您参考相关的学术论文、教材或者开源库,如OpenCV等,以获取更详细的实现细节和代码示例。 #### 引用[.reference_title] - *1* *2* *3* [基于四元数小波变换的遥感影像数字水印研究(论文阅读)](https://blog.csdn.net/qq_41821067/article/details/109752037)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
相关问题

光学遥感图像小波变换

### 关于光学遥感图像的小波变换 #### 小波变换在光学遥感中的应用概述 小波变换作为一种强大的工具,在光学遥感图像处理中扮演着重要角色。通过利用小波变换的特点,可以有效地去除噪声并提取有用信息。对于光学遥感图像而言,小波变换不仅有助于改善图像质量,还能辅助特征分析和其他高级处理任务。 #### 小波变换的技术实现方法 为了实现在光学遥感图像上的小波变换,通常遵循以下过程: 1. **选择合适的小波基** 根据特定的应用需求选取适当的小波基函数是非常重要的一步。不同的小波基适用于不同类型的数据集和目标对象。例如,Haar、Daubechies等都是常见的选择[^1]。 2. **执行二维离散小波变换 (DWT)** 对输入的光学遥感图像实施二维离散小波变换,将其转换到不同尺度的空间内表示。这一过程中会生成一系列近似分量以及水平、垂直和平面方向上的细节分量。 3. **阈值处理与降噪** 利用小波系数的低熵性和多分辨率特性,可以通过设定合理的阈值来区分信号的主要部分和次要部分(通常是噪声)。这一步骤旨在减少不必要的干扰因素,从而更好地保持原始数据的关键特征。 4. **逆向变换重建图像** 完成上述操作之后,还需要进行反向运算——即从小波域返回至空间域,恢复经过优化后的图像版本。此阶段涉及到计算逆离散小波变换(IDWT),以获得最终的结果图片。 ```matlab % MATLAB代码示例:简单的一级二维离散小波变换及其逆变换 [C,S] = wavedec2(I, 1, 'haar'); % 进行一级分解 A1 = appcoef2(C, S, 'haar', 1); % 提取近似分量 [H,V,D] = detcoef2('all', C, S, 1); % 获取三个方向的细节分量 I_rec = waverec2(C, S, 'haar'); % 执行IDWT重建原图 ``` #### 主要应用场景 - **去噪**:正如前面提到过的那样,小波变换特别擅长从复杂的背景环境中分离出纯净的目标物体轮廓,这对于提高卫星拍摄的照片清晰度至关重要。 - **边缘检测**:借助于多分辨率特性的优势,能够在不丢失任何细微结构的前提下突出显示边界位置,进而帮助识别地表形态变化情况。 - **压缩编码**:考虑到现代通信网络带宽有限的事实,有必要寻找高效的方式存储传输海量影像资料;此时采用基于小波框架下的算法便成为了一种理想的选择方案之一。 - **分类识别**:当面对大量异质性样本时,如何快速准确地区分各类别之间的差异显得尤为棘手。然而凭借出色的局部敏感度表现力,使得机器学习模型训练变得更加容易可行。

遥感小波变换去云python

### 使用Python实现遥感影像的小波变换以去除云层 为了利用小波变换去除遥感图像中的云层,可以采用PyWavelets库来进行多尺度分解。通过选择适当的小波基函数并调整阈值参数,能够有效减少噪声和不必要的细节,从而达到去云的效果。 #### 小波变换原理简介 小波变换是一种时间-频率分析工具,在不同分辨率下表示信号的能力使其非常适合用于图像处理任务。对于含有大量高频成分的云层部分,可以通过设定合理的阈值来抑制这些干扰项[^1]。 #### 实现过程描述 具体来说,先读入待处理的遥感图片文件;接着调用`pywt.wavedec2()`函数执行二维离散小波变换(DWT),得到低频子带(LL)和其他三个方向上的高频子带(LH, HL, HH); 对于每个高频分量应用软/硬阈值化操作; 最后再使用逆向DWT(`pywt.waverec2()`)重构原始尺寸大小的新图象。 以下是具体的代码示例: ```python import numpy as np from PIL import Image import pywt import matplotlib.pyplot as plt def remove_clouds(image_path): # 加载图像 img = Image.open(image_path).convert('L') image_array = np.array(img) # 执行小波变换 coeffs = pywt.wavedec2(data=image_array, wavelet='haar', level=3) cA, (cH, cV, cD), _, _ = coeffs threshold = 0.7 * max([abs(i).max() for i in [cH, cV, cD]]) # 应用阈值处理 new_coeffs = list(coeffs) for detail_level in range(1, len(new_coeffs)): new_detail = [] for band in new_coeffs[detail_level]: new_band = pywt.threshold(band, threshold, mode='soft') new_detail.append(new_band) new_coeffs[detail_level] = tuple(new_detail) # 进行反变换重建图像 reconstructed_image = pywt.waverec2(new_coeffs, 'haar') fig, axarr = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) axarr[0].imshow(image_array, cmap="gray") axarr[0].set_title("Original Image") axarr[1].imshow(reconstructed_image[:image_array.shape[0], :image_array.shape[1]], cmap="gray") axarr[1].set_title("Cloud Removed Image") plt.show() remove_clouds('path_to_your_remote_sensing_image.tif') ``` 此段程序展示了如何运用Haar小波完成一次三层级的小波分解,并对各层次下的水平(Horizontal)、垂直(Vertical)及对角线(Direction)方向上的系数施加软阈值法过滤掉可能代表云的信息。最后再次合成一张新的无云版本遥感照片[^2]。
阅读全文

相关推荐

m
f1=50; % 频率1 f2=100; % 频率2 fs=2*(f1+f2); % 采样频率 Ts=1/fs; % 采样间隔 N=120; % 采样点数 n=1:N; y=sin(2*pi*f1*n*Ts)+sin(2*pi*f2*n*Ts); % 正弦波混合 figure(1) plot(y); title('两个正弦信号') figure(2) stem(abs(fft(y))); title('两信号频谱') %% 2.小波滤波器谱分析 h=wfilters('db30','l'); % 低通 g=wfilters('db30','h'); % 高通 h=[h,zeros(1,N-length(h))]; % 补零(圆周卷积,且增大分辨率变于观察) g=[g,zeros(1,N-length(g))]; % 补零(圆周卷积,且增大分辨率变于观察) figure(3); stem(abs(fft(h))); title('低通滤波器图'); figure(4); stem(abs(fft(g))); title('高通滤波器图') %% 3.MALLET分解算法(圆周卷积的快速傅里叶变换实现) sig1=ifft(fft(y).*fft(h)); % 低通(低频分量) sig2=ifft(fft(y).*fft(g)); % 高通(高频分量) figure(5); % 信号图 subplot(2,1,1) plot(real(sig1)); title('分解信号1') subplot(2,1,2) plot(real(sig2)); title('分解信号2') figure(6); % 频谱图 subplot(2,1,1) stem(abs(fft(sig1))); title('分解信号1频谱') subplot(2,1,2) stem(abs(fft(sig2))); title('分解信号2频谱') %% 4.MALLET重构算法 sig1=dyaddown(sig1); % 2抽取 sig2=dyaddown(sig2); % 2抽取 sig1=dyadup(sig1); % 2插值 sig2=dyadup(sig2); % 2插值 sig1=sig1(1,[1:N]); % 去掉最后一个零 sig2=sig2(1,[1:N]); % 去掉最后一个零 hr=h(end:-1:1); % 重构低通 gr=g(end:-1:1); % 重构高通 hr=circshift(hr',1)'; % 位置调整圆周右移一位 gr=circshift(gr',1)'; % 位置调整圆周右移一位 sig1=ifft(fft(hr).*fft(sig1)); % 低频 sig2=ifft(fft(gr).*fft(sig2)); % 高频 sig=sig1+sig2; % 源信号 %% 5.比较 figure(7); subplot(2,1,1) plot(real(sig1)); title('重构低频信号'); subplot(2,1,2) plot(real(sig2)); title('重构高频信号'); figure(8); subplot(2,1,1) stem(abs(fft(sig1))); title('重构低频信号频谱'); subplot(2,1,2) stem(abs(fft(sig2))); title('重构高频信号频谱'); figure(9) plot(real(sig),'r','linewidth',2); hold on; plot(y); legend('重构信号','原始信号') title('重构信号与原始信号比较') f1=50; % 频率1 f2=100; % 频率2 fs=2*(f1+f2); % 采样频率 Ts=1/fs; % 采样间隔 N=120; % 采样点数 n=1:N; y=sin(2*pi*f1*n*Ts)+sin(2*pi*f2*n*Ts); % 正弦波混合 figure(1) plot(y); title('两个正弦信号') figure(2) stem(abs(fft(y))); title('两信号频谱') %% 2.小波滤波器谱分析 h=wfilters('db30','l'); % 低通 g=wfilters('db30','h'); % 高通 h=[h,zeros(1,N-length(h))]; % 补零(圆周卷积,且增大分辨率变于观察) g=[g,zeros(1,N-length(g))]; % 补零(圆周卷积,且增大分辨率变于观察) figure(3); stem(abs(fft(h))); title('低通滤波器图'); figure(4); stem(abs(fft(g))); title('高通滤波器图') %% 3.MALLET分解算法(圆周卷积的快速傅里叶变换实现) sig1=ifft(fft(y).*fft(h)); % 低通(低频分量) sig2=ifft(fft(y).*fft(g)); % 高通(高频分量) figure(5); % 信号图 subplot(2,1,1) plot(real(sig1)); title('分解信号1') subplot(2,1,2) plot(real(sig2)); title('分解信号2') figure(6); % 频谱图 subplot(2,1,1) stem(abs(fft(sig1))); title('分解信号1频谱') subplot(2,1,2) stem(abs(fft(sig2))); title('分解信号2频谱') %% 4.MALLET重构算法 sig1=dyaddown(sig1); % 2抽取 sig2=dyaddown(sig2); % 2抽取 sig1=dyadup(sig1); % 2插值 sig2=dyadup(sig2); % 2插值 sig1=sig1(1,[1:N]); % 去掉最后一个零 sig2=sig2(1,[1:N]); % 去掉最后一个零 hr=h(end:-1:1); % 重构低通 gr=g(end:-1:1); % 重构高通 hr=circshift(hr',1)'; % 位置调整圆周右移一位 gr=circshift(gr',1)'; % 位置调整圆周右移一位 sig1=ifft(fft(hr).*fft(sig1)); % 低频 sig2=ifft(fft(gr).*fft(sig2)); % 高频 sig=sig1+sig2; % 源信号 %% 5.比较 figure(7); subplot(2,1,1) plot(real(sig1)); title('重构低频信号'); subplot(2,1,2) plot(real(sig2)); title('重构高频信号'); figure(8); subplot(2,1,1) stem(abs(fft(sig1))); title('重构低频信号频谱'); subplot(2,1,2) stem(abs(fft(sig2))); title('重构高频信号频谱'); figure(9) plot(real(sig),'r','linewidth',2); hold on; plot(y); legend('重构信号','原始信号') title('重构信号与原始信号比较')

最新推荐

recommend-type

遥感影像监督分类与非监督分类及相关代码实现

遥感影像监督分类与非监督分类是遥感影像处理中两个重要的分类方法,本文详细论述了这两种方法的原理、算法和实现代码,特别是监督分类的最大释然分类法和非监督分类的ISODATA算法。文章还对两种方法的分类结果进行...
recommend-type

python,sklearn,svm,遥感数据分类,代码实例

对于线性不可分的数据,SVM引入了核函数的概念,通过核函数进行非线性变换,将数据映射到更高维度,使得原本在原空间中难以区分的数据在新空间中变得线性可分。 ### SVM实现环境 在Python中,我们通常使用scikit-...
recommend-type

夜间遥感影像数据(汇总).docx

92-13年的夜间遥感影像数据,DMSP_OLS夜间灯光数据,及VIIRS_NPP的2017年每月的夜间灯光数据汇总,方便进行城市化进程,扶贫地区演变等应用的分析和预测。
recommend-type

python gdal + skimage实现基于遥感影像的传统图像分割及合并外加矢量化

在本篇博客中,作者探讨了如何利用Python的GDAL库和skimage库来处理遥感影像,进行传统的图像分割、图像块的合并,并进一步实现矢量化。GDAL(Geospatial Data Abstraction Library)是一个强大的开源栅格和矢量数据...
recommend-type

landsat-遥感影像地表温度反演教程(大气校正法).docx

Landsat 遥感影像地表温度反演教程(大气校正法) 本教程主要讲解了如何使用 Landsat 遥感影像数据进行地表温度反演,基于辐射传输方程,通过大气校正法对 Landsat 遥感影像数据进行处理。下面是教程的详细内容: ...
recommend-type

探索zinoucha-master中的0101000101奥秘

资源摘要信息:"zinoucha:101000101" 根据提供的文件信息,我们可以推断出以下几个知识点: 1. 文件标题 "zinoucha:101000101" 中的 "zinoucha" 可能是某种特定内容的标识符或是某个项目的名称。"101000101" 则可能是该项目或内容的特定代码、版本号、序列号或其他重要标识。鉴于标题的特殊性,"zinoucha" 可能是一个与数字序列相关联的术语或项目代号。 2. 描述中提供的 "日诺扎 101000101" 可能是标题的注释或者补充说明。"日诺扎" 的含义并不清晰,可能是人名、地名、特殊术语或是一种加密/编码信息。然而,由于描述与标题几乎一致,这可能表明 "日诺扎" 和 "101000101" 是紧密相关联的。如果 "日诺扎" 是一个密码或者编码,那么 "101000101" 可能是其二进制编码形式或经过某种特定算法转换的结果。 3. 标签部分为空,意味着没有提供额外的分类或关键词信息,这使得我们无法通过标签来获取更多关于该文件或项目的信息。 4. 文件名称列表中只有一个文件名 "zinoucha-master"。从这个文件名我们可以推测出一些信息。首先,它表明了这个项目或文件属于一个更大的项目体系。在软件开发中,通常会将主分支或主线版本命名为 "master"。所以,"zinoucha-master" 可能指的是这个项目或文件的主版本或主分支。此外,由于文件名中同样包含了 "zinoucha",这进一步确认了 "zinoucha" 对该项目的重要性。 结合以上信息,我们可以构建以下几个可能的假设场景: - 假设 "zinoucha" 是一个项目名称,那么 "101000101" 可能是该项目的某种特定标识,例如版本号或代码。"zinoucha-master" 作为主分支,意味着它包含了项目的最稳定版本,或者是开发的主干代码。 - 假设 "101000101" 是某种加密或编码,"zinoucha" 和 "日诺扎" 都可能是对其进行解码或解密的钥匙。在这种情况下,"zinoucha-master" 可能包含了用于解码或解密的主算法或主程序。 - 假设 "zinoucha" 和 "101000101" 代表了某种特定的数据格式或标准。"zinoucha-master" 作为文件名,可能意味着这是遵循该标准或格式的最核心文件或参考实现。 由于文件信息非常有限,我们无法确定具体的领域或背景。"zinoucha" 和 "日诺扎" 可能是任意领域的术语,而 "101000101" 作为二进制编码,可能在通信、加密、数据存储等多种IT应用场景中出现。为了获得更精确的知识点,我们需要更多的上下文信息和具体的领域知识。
recommend-type

【Qt与OpenGL集成】:提升框选功能图形性能,OpenGL的高效应用案例

![【Qt与OpenGL集成】:提升框选功能图形性能,OpenGL的高效应用案例](https://img-blog.csdnimg.cn/562b8d2b04d343d7a61ef4b8c2f3e817.png) # 摘要 本文旨在探讨Qt与OpenGL集成的实现细节及其在图形性能优化方面的重要性。文章首先介绍了Qt与OpenGL集成的基础知识,然后深入探讨了在Qt环境中实现OpenGL高效渲染的技术,如优化渲染管线、图形数据处理和渲染性能提升策略。接着,文章着重分析了框选功能的图形性能优化,包括图形学原理、高效算法实现以及交互设计。第四章通过高级案例分析,比较了不同的框选技术,并探讨了构
recommend-type

ffmpeg 指定屏幕输出

ffmpeg 是一个强大的多媒体处理工具,可以用来处理视频、音频和字幕等。要使用 ffmpeg 指定屏幕输出,可以使用以下命令: ```sh ffmpeg -f x11grab -s <width>x<height> -r <fps> -i :<display>.<screen>+<x_offset>,<y_offset> output_file ``` 其中: - `-f x11grab` 指定使用 X11 屏幕抓取输入。 - `-s <width>x<height>` 指定抓取屏幕的分辨率,例如 `1920x1080`。 - `-r <fps>` 指定帧率,例如 `25`。 - `-i
recommend-type

个人网站技术深度解析:Haskell构建、黑暗主题、并行化等

资源摘要信息:"个人网站构建与开发" ### 网站构建与部署工具 1. **Nix-shell** - Nix-shell 是 Nix 包管理器的一个功能,允许用户在一个隔离的环境中安装和运行特定版本的软件。这在需要特定库版本或者不同开发环境的场景下非常有用。 - 使用示例:`nix-shell --attr env release.nix` 指定了一个 Nix 环境配置文件 `release.nix`,从而启动一个专门的 shell 环境来构建项目。 2. **Nix-env** - Nix-env 是 Nix 包管理器中的一个命令,用于环境管理和软件包安装。它可以用来安装、更新、删除和切换软件包的环境。 - 使用示例:`nix-env -if release.nix` 表示根据 `release.nix` 文件中定义的环境和依赖,安装或更新环境。 3. **Haskell** - Haskell 是一种纯函数式编程语言,以其强大的类型系统和懒惰求值机制而著称。它支持高级抽象,并且广泛应用于领域如研究、教育和金融行业。 - 标签信息表明该项目可能使用了 Haskell 语言进行开发。 ### 网站功能与技术实现 1. **黑暗主题(Dark Theme)** - 黑暗主题是一种界面设计,使用较暗的颜色作为背景,以减少对用户眼睛的压力,特别在夜间或低光环境下使用。 - 实现黑暗主题通常涉及CSS中深色背景和浅色文字的设计。 2. **使用openCV生成缩略图** - openCV 是一个开源的计算机视觉和机器学习软件库,它提供了许多常用的图像处理功能。 - 使用 openCV 可以更快地生成缩略图,通过调用库中的图像处理功能,比如缩放和颜色转换。 3. **通用提要生成(Syndication Feed)** - 通用提要是 RSS、Atom 等格式的集合,用于发布网站内容更新,以便用户可以通过订阅的方式获取最新动态。 - 实现提要生成通常需要根据网站内容的更新来动态生成相应的 XML 文件。 4. **IndieWeb 互动** - IndieWeb 是一个鼓励人们使用自己的个人网站来发布内容,而不是使用第三方平台的运动。 - 网络提及(Webmentions)是 IndieWeb 的一部分,它允许网站之间相互提及,类似于社交媒体中的评论和提及功能。 5. **垃圾箱包装/网格系统** - 垃圾箱包装可能指的是一个用于暂存草稿或未发布内容的功能,类似于垃圾箱回收站。 - 网格系统是一种布局方式,常用于网页设计中,以更灵活的方式组织内容。 6. **画廊/相册/媒体类型/布局** - 这些关键词可能指向网站上的图片展示功能,包括但不限于相册、网络杂志、不同的媒体展示类型和布局设计。 7. **标签/类别/搜索引擎** - 这表明网站具有内容分类功能,用户可以通过标签和类别来筛选内容,并且可能内置了简易的搜索引擎来帮助用户快速找到相关内容。 8. **并行化(Parallelization)** - 并行化在网站开发中通常涉及将任务分散到多个处理单元或线程中执行,以提高效率和性能。 - 这可能意味着网站的某些功能被设计成可以同时处理多个请求,比如后台任务、数据处理等。 9. **草稿版本+实时服务器** - 草稿版本功能允许用户保存草稿并能在需要时编辑和发布。 - 实时服务器可能是指网站采用了实时数据同步的技术,如 WebSockets,使用户能够看到内容的实时更新。 ### 总结 上述信息展示了一个人在个人网站开发过程中所涉及到的技术和功能实现,包括了环境配置、主题设计、内容管理和用户体验优化。从使用Nix-shell进行环境隔离和依赖管理到实现一个具有高级功能和良好用户体验的个人网站,每个技术点都是现代Web开发中的关键组成部分。
recommend-type

Qt框选功能的国际化实践:支持多语言界面的核心技术解析

![Qt框选功能的国际化实践:支持多语言界面的核心技术解析](https://opengraph.githubassets.com/1e33120fcc70e1a474ab01c7262f9ee89247dfbff9cf5cb5b767da34e5b70381/LCBTS/Qt-read-file) # 摘要 本文系统地探讨了Qt框架下多语言界面设计与国际化的实现原理和技术细节。首先介绍了Qt国际化框架的基础知识和多语言界面设计的基本原理,包括文本处理、资源文件管理、核心API的应用等。随后,文章详细阐述了设计可翻译用户界面、动态语言切换和界面更新以及测试和调试多语言界面的实践技巧。深入理解