quyu = {"left":100,"top":100,"width":300,"height":300} with mss() as sct: quyujieping = sct.grab(quyu) 截图之后保存截图
时间: 2024-10-14 22:05:48 浏览: 21
这个Python代码片段是在使用`mss`库进行屏幕截图并裁剪特定区域。首先,`quyu`是一个字典,它定义了一个矩形区域,左上角坐标为(100, 100),宽度为300像素,高度为300像素。
`with mss() as sct:`这部分创建了一个名为`sct`的上下文管理器,允许你在代码块中方便地操作截图功能,而无需显式关闭`sct`实例。接下来的`sct.grab(quyu)`函数会截取屏幕上的指定矩形区域`quyu`的内容,并返回一个包含截图信息的对象。
截图获取后,如果想要将截图保存,通常需要对返回的对象进一步处理。例如,你可以将其转换为图像文件,如PNG或JPEG,然后写入到硬盘上。这里没有直接保存图片的操作,你需要额外添加一些代码来完成保存,比如:
```python
# 假设save_path是你要保存截图的路径
screen_data = quyujieping.rgb # 获取截图数据
img = Image.frombytes('RGB', (quyujieping.width, quyujieping.height), screen_data)
img.save(save_path)
```
相关问题
帮我优化如下sql:SELECT T1.quyu, T2.lastNum, T3.jdNum, T4.xcNum FROM (SELECT STREET AS quyu FROM STREET_YXW WHERE 1=1 GROUP BY STREET ) T1 LEFT JOIN ( SELECT T2.STREET_NAME AS quyu,COUNT(*) AS lastNum FROM V_FIRESAFETYREGISTER_DYC T1 LEFT JOIN V_HSE_COMB_BUILDING_INFO_PA T2 ON LEFT(T1.HOUSEID,19) = T2.BUILDING_CODE WHERE T1.LASTLOGOUTTIME IS NOT NULL and date_format(T1.LASTLOGOUTTIME,'%Y') = ? GROUP BY T2.STREET_NAME ) T2 ON T1.quyu = T2.quyu LEFT JOIN ( SELECT T3.STREET_NAME AS quyu,COUNT(DISTINCT T1.FIREID) AS jdNum FROM V_SX_FIRESAFETYPLAN T1 LEFT JOIN V_FIRESAFETYREGISTER_DYC T2 ON T1.FIREID = T2.ID LEFT JOIN V_HSE_COMB_BUILDING_INFO_PA T3 ON LEFT(T2.HOUSEID,19) = T3.BUILDING_CODE WHERE T1.DATE_NEW IS NOT NULL and date_format(T1.DATE_NEW,'%Y') = ? GROUP BY T3.STREET_NAME ) T3 ON T1.quyu = T3.quyu LEFT JOIN ( SELECT T3.STREET_NAME AS quyu,COUNT(*) as xcNum FROM V_SX_FIRESAFETYTRAINING T1 LEFT JOIN V_FIRESAFETYREGISTER_DYC T2 ON T1.FIREID = T2.ID LEFT JOIN V_HSE_COMB_BUILDING_INFO_PA T3 ON LEFT(T2.HOUSEID,19) = T3.BUILDING_CODE WHERE T1.TRAININGTIME IS NOT NULL and date_format(T1.TRAININGTIME,'%Y') = ? GROUP BY T3.STREET_NAME ) T4 ON T1.quyu = T4.quyu ORDER BY T2.lastNum limit ?,?
可以尝试以下优化:
1. 对于子查询中的表,添加合适的索引以提高查询效率;
2. 可以考虑将子查询改为临时表,避免多次重复查询;
3. 在需要排序的字段上添加索引;
4. 尽量避免在 JOIN 条件中使用函数,可以将日期比较条件提取到 WHERE 子句中。
优化后的 SQL 如下:
```
CREATE TEMPORARY TABLE tmp_street AS
SELECT STREET AS quyu FROM STREET_YXW WHERE 1=1 GROUP BY STREET;
CREATE TEMPORARY TABLE tmp_lastNum AS
SELECT T2.STREET_NAME AS quyu, COUNT(*) AS lastNum
FROM V_FIRESAFETYREGISTER_DYC T1
LEFT JOIN V_HSE_COMB_BUILDING_INFO_PA T2 ON LEFT(T1.HOUSEID, 19) = T2.BUILDING_CODE
WHERE T1.LASTLOGOUTTIME IS NOT NULL AND date_format(T1.LASTLOGOUTTIME,'%Y') = ?
GROUP BY T2.STREET_NAME;
CREATE TEMPORARY TABLE tmp_jdNum AS
SELECT T3.STREET_NAME AS quyu, COUNT(DISTINCT T1.FIREID) AS jdNum
FROM V_SX_FIRESAFETYPLAN T1
LEFT JOIN V_FIRESAFETYREGISTER_DYC T2 ON T1.FIREID = T2.ID
LEFT JOIN V_HSE_COMB_BUILDING_INFO_PA T3 ON LEFT(T2.HOUSEID, 19) = T3.BUILDING_CODE
WHERE T1.DATE_NEW IS NOT NULL AND date_format(T1.DATE_NEW,'%Y') = ?
GROUP BY T3.STREET_NAME;
CREATE TEMPORARY TABLE tmp_xcNum AS
SELECT T3.STREET_NAME AS quyu, COUNT(*) AS xcNum
FROM V_SX_FIRESAFETYTRAINING T1
LEFT JOIN V_FIRESAFETYREGISTER_DYC T2 ON T1.FIREID = T2.ID
LEFT JOIN V_HSE_COMB_BUILDING_INFO_PA T3 ON LEFT(T2.HOUSEID, 19) = T3.BUILDING_CODE
WHERE T1.TRAININGTIME IS NOT NULL AND date_format(T1.TRAININGTIME,'%Y') = ?
GROUP BY T3.STREET_NAME;
SELECT T1.quyu, T2.lastNum, T3.jdNum, T4.xcNum
FROM tmp_street T1
LEFT JOIN tmp_lastNum T2 ON T1.quyu = T2.quyu
LEFT JOIN tmp_jdNum T3 ON T1.quyu = T3.quyu
LEFT JOIN tmp_xcNum T4 ON T1.quyu = T4.quyu
ORDER BY T2.lastNum
LIMIT ?,?;
```
请注意,这只是一种可能的优化方案,具体的优化方法还要根据数据库的实际情况进行调整。
import csv import requests from lxml import etree if __name__ == "__main__": url = 'https://jn.lianjia.com/zufang/pg{}' header = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Safari/537.36 Edg/113.0.1774.57' } # 爬取源码数据 headers = ["区域", "小区名称", "户型", "面积(㎡)", "价格(元/月)"] path = "链家济南租房数据.csv" with open(path, 'w', newline='') as f: csv_write = csv.writer(f) csv_head = ["区域", "小区名称", "户型", "面积(㎡)", "价格(元/月)"] csv_write.writerow(csv_head) for num in range: new_url = url.format(num) page_num1 = requests.get(url=new_url, headers=header) page_num1.encoding = ('utf-8') page_num = page_num1.text tree = etree.HTML(page_num) # 存储的就是标签对象 div_list = tree.xpath('//*[@id="content"]/div[1]/div[1]/div') with open(path, 'a', newline='') as f: csv_write = csv.writer(f) for div in div_list: quyu = div.xpath('./div/p[2]/a[1]//text()')[0] name = div.xpath('./div/p[2]/a[3]//text()')[0] area = div.xpath('./div/p[2]/text()')[4].split()[0] type = div.xpath('./div/p[2]/text()')[6].split()[0] place = div.xpath('./div//span/em/text()')[0] data_row = [quyu, name, type, area, place] csv_write.writerow(data_row) print("完成")改成获取全部信息
好的,针对您的需求,可以将代码修改如下:
```
import csv
import requests
from lxml import etree
if __name__ == "__main__":
url = 'https://jn.lianjia.com/zufang/pg{}'
header = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Safari/537.36 Edg/113.0.1774.57'
}
# 爬取源码数据
headers = ["区域", "小区名称", "户型", "面积(㎡)", "价格(元/月)"]
path = "链家济南租房数据.csv"
with open(path, 'w', newline='') as f:
csv_write = csv.writer(f)
csv_head = ["区域", "小区名称", "户型", "面积(㎡)", "价格(元/月)"]
csv_write.writerow(csv_head)
# 获取总页数
first_page = requests.get(url.format(1), headers=header)
first_page.encoding = ('utf-8')
first_tree = etree.HTML(first_page.text)
total_page = int(first_tree.xpath('//*[@id="content"]/div[1]/div[2]/div/a[last()-1]/text()')[0])
# 爬取每一页的数据
with open(path, 'a', newline='') as f:
csv_write = csv.writer(f)
for num in range(1, total_page+1):
new_url = url.format(num)
page_num1 = requests.get(url=new_url, headers=header)
page_num1.encoding = ('utf-8')
page_num = page_num1.text
tree = etree.HTML(page_num)
# 存储的就是标签对象
div_list = tree.xpath('//*[@id="content"]/div[1]/div[1]/div')
for div in div_list:
quyu = div.xpath('./div/p[2]/a[1]//text()')[0]
name = div.xpath('./div/p[2]/a[3]//text()')[0]
area = div.xpath('./div/p[2]/text()')[4].split()[0]
type = div.xpath('./div/p[2]/text()')[6].split()[0]
place = div.xpath('./div//span/em/text()')[0]
data_row = [quyu, name, type, area, place]
csv_write.writerow(data_row)
print("第{}页完成".format(num))
print("所有数据爬取完成")
```
这样,代码就可以自动获取总页数,然后遍历每一页获取数据。在输出的时候,也会打印出当前爬取的页数,方便查看进度。
阅读全文