Squeeze-Excitation
时间: 2024-01-05 14:04:36 浏览: 56
Squeeze-and-Excitation Networks
Squeeze-Excitation (SE) 是一种用于增强神经网络特征表示能力的方法。它通过在网络中引入SE模块来自适应地调整通道特征的重要性。SE模块主要由两个步骤组成:squeeze和excitation。
在squeeze步骤中,SE模块通过全局平均池化操作对输入的特征图进行降维,将每个通道的特征图转换为一个数值。
在excitation步骤中,通过使用一个小型的多层感知机(MLP)来学习每个通道的权重。这个MLP接受squeeze步骤输出的数值作为输入,并产生一个与通道数量相同的向量,表示每个通道的权重。
最后,通过将这些权重与输入特征图相乘,SE模块将增强重要通道的特征表示能力,从而提高网络性能。
SE模块可以很容易地集成到现有的卷积神经网络中,并且在多个计算机视觉任务中都取得了显著的性能提升,例如图像分类、目标检测和语义分割等任务。
阅读全文