基于随机森林下的土壤肥力属性制图模型代码
时间: 2024-11-27 12:18:17 浏览: 3
基于MFP模型的土壤肥力研究
基于随机森林的土壤肥力属性制图模型通常是一个机器学习项目,它利用随机森林算法对土壤样本数据进行训练,然后预测特定区域的土壤肥力特性。以下是构建这样一个模型的基本步骤,以Python语言和常用的库如scikit-learn为例:
1. 导入库:
```python
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import pandas as pd
```
2. 加载数据:
```python
data = pd.read_csv('soil_data.csv') # 假设数据文件名是soil_data.csv
```
3. 数据预处理:
```python
X = data.drop('Soil_Fertility', axis=1) # 假设'Soil_Fertility'是目标变量
y = data['Soil_Fertility']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
4. 创建并训练模型:
```python
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
```
5. 预测及评估:
```python
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("MSE:", mse)
```
6. 制作地图:
```python
# 使用geopandas和matplotlib将预测结果叠加到地理空间数据上
import geopandas as gpd
gdf = gpd.read_file('map_shapefile.shp')
gdf['predicted_fertility'] = model.predict(gdf[feature_columns]) # feature_columns是你需要输入特征列名
gdf.plot(column='predicted_fertility', cmap='viridis')
```
阅读全文