agg_csm.columns = pd.Index(['{}_{}_{}'.format(e[0], '%dM' % m, e[1]) for e in agg_csm.columns.tolist()]) agg_csm = agg_csm.reset_index()
时间: 2024-04-13 22:26:26 浏览: 97
这段代码是将聚合后的 `agg_csm` DataFrame 的列名进行重命名,并重置索引。
首先,使用 `agg_csm.columns.tolist()` 将 `agg_csm` DataFrame 的列名转换为列表。然后,通过列表推导式遍历每个列名,并使用字符串格式化将其重命名为新的列名。
新的列名的格式为 `{}_{}_{}'format(e[0], '%dM' % m, e[1])`,其中 `{}` 表示占位符,`e[0]` 表示原始列名的第一个部分,`'%dM' % m` 表示月份部分,`e[1]` 表示原始列名的第二个部分。
重命名后,使用 `pd.Index()` 将重命名后的列名列表转换为新的索引,并将其赋值给 `agg_csm.columns`,以更新 `agg_csm` DataFrame 的列名。
接下来,使用 `agg_csm.reset_index()` 重置 `agg_csm` DataFrame 的索引,将原始索引转换为默认的整数索引,并生成一个新的索引列。
通过这段代码,可以对聚合后的 DataFrame 进行列名重命名,并重置索引。
相关问题
agg_type_pym.columns = pd.Index(['pym_{}_{}_{}_{}_{}_{}'.format(e[0], t[0], t[1], t[2], '%dM' % m, e[1]) for e in agg_type_pym.columns.tolist()]) agg_type_pym = agg_type_pym.reset_index()
这段代码是将 `agg_type_pym` DataFrame 的列名进行格式化,并赋予新的列名。使用了列表推导式来生成新的列名,其中使用了字符串的 `format` 方法来根据每个列名的不同部分进行格式化。格式化的模板是 `'pym_{}_{}_{}_{}_{}_{}'`,其中 `{}` 是占位符。每个占位符分别对应了 `e[0]`、`t[0]`、`t[1]`、`t[2]`、`'%dM' % m` 和 `e[1]` 这些变量的值。最后,通过调用 `pd.Index` 将生成的新列名赋值给 `agg_type_pym.columns`。接下来,通过调用 `reset_index()` 来重置索引,重新生成一个新的 DataFrame。
user_mer = datasets[['User_id','Merchant_id']].groupby(by=['User_id','Merchant_id']).agg({'Merchant_id':'count'}) user_mer.columns = ['user_mer'] user_mer.reset_index(inplace=True)
这段代码的作用是对 `datasets` 中的 `User_id` 和 `Merchant_id` 进行分组统计,并计算每组中 `Merchant_id` 的数量。然后将结果保存到名为 `user_mer` 的 DataFrame 中,并重命名 `Merchant_id` 的列名为 `user_mer`。
这段代码可以进行如下优化:
```python
user_mer = datasets.groupby(['User_id', 'Merchant_id']).size().reset_index(name='user_mer')
```
这里使用了 `groupby` 函数对 `User_id` 和 `Merchant_id` 进行分组,并使用 `size` 函数对每个分组的大小进行计数。然后使用 `reset_index` 函数将结果重新设置为 DataFrame,并给计数列起一个名字 `user_mer`。
相比原来的代码,这段代码更加简洁,同时也更加高效。
阅读全文