优先队列优化多重背包

时间: 2024-03-17 13:39:06 浏览: 17
优先队列优化多重背包是一种常见的算法优化技巧,用于解决多重背包问题。多重背包问题是在背包问题的基础上,每个物品的数量有限制,需要考虑如何选择物品使得总价值最大化。 在传统的动态规划解法中,我们会将每个物品的数量展开成单个物品,然后使用01背包或完全背包的思路进行求解。但是这种方法会导致时间复杂度过高,无法在较短的时间内得到结果。 而优先队列优化多重背包问题的思路是将每个物品的数量视为一个整体,将其作为一个元素加入到优先队列中。在每次选择物品时,我们从优先队列中选择当前价值最高的物品进行放入背包,并更新剩余物品数量。这样可以有效地减少计算量,提高算法效率。 具体步骤如下: 1. 将每个物品的数量视为一个整体,构建一个优先队列(通常使用最大堆)。 2. 将所有物品按照单位重量的价值进行排序,并依次加入优先队列中。 3. 从优先队列中选择当前价值最高的物品进行放入背包,并更新剩余物品数量。 4. 重复步骤3,直到背包容量达到上限或者优先队列为空。 这种方法可以有效地减少计算量,提高算法效率。但需要注意的是,优先队列优化多重背包问题的时间复杂度仍然较高,通常为O(NlogN),其中N为物品的总数量。
相关问题

单调队列优化多重背包代码

下面是单调队列优化多重背包的代码实现: ```c++ #include <iostream> #include <cstring> #include <algorithm> using namespace std; const int N = 10010; int f[N]; int q[N], v[N], w[N]; int n, m; int main() { cin >> n >> m; for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i]; for (int i = 1; i <= n; i ++ ) for (int j = m; j >= v[i]; j -- ) { int hh = 0, tt = -1; for (int k = 0; k * v[i] <= j; k ++ ) { int t = f[j - k * v[i]] - k * w[i]; while (hh <= tt && q[tt] < t) tt -- ; q[ ++ tt] = t; if (hh <= tt) f[j] = max(f[j], q[hh] + k * w[i]); } } cout << f[m] << endl; return 0; } ``` 该代码中的单调队列使用了双端队列来实现,队头表示队列中最大的元素,队尾表示队列中最小的元素。当加入一个新的元素时,将队列中所有小于该元素的元素弹出,然后将该元素压入队尾。同时,如果队头元素已经超出了当前的背包容量,需要将队头元素弹出。 在遍历所有物品和背包容量的组合时,每次需要清空队列。对于每个物品,从当前背包容量到该物品体积之间的所有容量,都需要计算出最大的价值。在计算价值时,需要使用单调队列进行优化。 该算法的时间复杂度为 O(N*V),空间复杂度为 O(V),其中 N 表示物品的数量,V 表示背包的容量。

单调队列优化多重背包的原理

单调队列优化多重背包的原理是将多重背包问题转化为单调队列优化的01背包问题,从而减少时间复杂度。 具体做法是先将每种物品拆分成若干个01物品,然后将这些01物品按照单价从高到低排序。接着,用单调队列维护当前容量下的最大价值和最小重量。对于每个01物品,将其加入队列中,并更新队列中的最大价值和最小重量。如果加入当前物品后队列中的最大价值超过背包容量,则弹出队头元素,直到队列中最大价值小于等于背包容量为止。 最后,队列中的最大价值即为多重背包问题的最优解。 这种做法的时间复杂度为O(NV),其中N为物品数,V为背包容量。相比于朴素的多重背包算法,时间复杂度有了很大的优化。

相关推荐

最新推荐

recommend-type

优先队列(priority_queue)的C语言实现代码

本文简要介绍一种基于数组二叉堆实现的优先队列,定义的数据结构和实现的函数接口说明如下
recommend-type

C语言使用广度优先搜索算法解决迷宫问题(队列)

主要介绍了C语言使用广度优先搜索算法解决迷宫问题,结合迷宫问题分析了C语言队列广度优先搜索算法的相关使用技巧,需要的朋友可以参考下
recommend-type

C语言数据结构优先队列实现

一. 优先队列的定义 优先队列是0个或多个元素的集合,每个元素都有一个优先权或值,对优先队列执行的操作有1) 查找;2) 插入一个新元素;3) 删除。 本程序的实现 二. 实现本优先队列的初始化,查找,插入,删除操作,...
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种