Python二维云台追踪代码

时间: 2024-05-13 21:11:45 浏览: 153
Python二维云台追踪代码是一种通过Python语言编写的程序,用于实现二维云台的追踪功能。通过该程序,可以将相机的视线与目标物体保持一致,实现物体的自动跟踪。这种程序通常需要借助机器视觉技术和图像处理算法来实现。下面是一个简单的Python二维云台追踪代码示例: ``` import cv2 import numpy as np cap = cv2.VideoCapture(0) # 打开摄像头 while True: ret, frame = cap.read() # 读取视频帧 if not ret: break hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # 转换颜色空间 lower_color = np.array([0, 70, 50]) upper_color = np.array([10, 255, 255]) mask = cv2.inRange(hsv, lower_color, upper_color) # 颜色过滤 contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # 查找轮廓 if len(contours) > 0: c = max(contours, key=cv2.contourArea) # 找到最大的轮廓 M = cv2.moments(c) # 计算轮廓的矩 cx = int(M['m10'] / M['m00']) # 计算质心坐标 cy = int(M['m01'] / M['m00']) cv2.circle(frame, (cx, cy), 5, (0, 0, 255), -1) # 在质心位置画圆 cv2.drawContours(frame, [c], 0, (0, 255, 0), 2) # 绘制轮廓 cv2.imshow('frame', frame) # 显示视频帧 if cv2.waitKey(1) == ord('q'): # 按'q'键退出 break cap.release() cv2.destroyAllWindows() ```
阅读全文

相关推荐

zip
# 基于Openmv的视觉跟踪小车 ## 一、实验原理及实验内容 ### 1.物体识别 本次实验目的是使得小车可以跟踪目标,故首先确定跟踪目标,由于小车整体框架从零开始搭建,并没有太多的金钱可以选择昂贵的摄像头,故本次实验的目标识别选择较为简单的方式以减少硬件压力。本次实验首先识别纯色物体,是完成对纯色物体识别之后更进一步选择跟踪AprilTag。 AprilTag是一个视觉基准系统,可用于各种任务,包括AR,机器人和相机校准。这个tag可以直接用打印机打印出来,而AprilTag检测程序可以计算相对于相机的精确3D位置,方向和id。 AprilTag内容主要包含三个步骤: 第一步是如何根据梯度检测出图像中的各种边缘。 第二步即如何在边缘图像中找出需要的四边形图案并进行筛选,AprilTag尽可能的对检测出的边缘检测,首先剔除非直线边缘,在直线边缘进行邻接边缘查找,最终若形成闭环则为检测到一个四边形。对四边形进行解码确定Apriltag标签。 第三步确定四边形的中心点作为要跟踪的三维左边点。 Openmv对以上步骤进行了函数封装,可以用img.find_apriltags()函数定位Apriltag标签,并且可以通过该函数的返回值的方法确定三维坐标和三维角度:可以用获取x轴坐标tag.x_translation(), tag.y_translation()、tag.z_translation()是y、z轴坐标 。 ### 2.云台追踪 openmv中搜索目标函数的返回值包括了目标物体中心的x、y坐标,原点是在图片的最左下角,就是说如果我们按照直接得到的坐标都是正的,但是我们要求云台追踪目标就是让目标始终出现在视野最中间,都是正的值我们无法判断图片到底是往哪边偏。为了解决这样的问题,我们只需要对得到的坐标进行简单的处理,openmv获得图片宽高都可以用函数获得,故已知图片宽width,高度height,目标中心点坐标x,y。按照相对比例来判断目标点在相机内的相对位置: $$ y1=y/height-0.5 $$ $$ x1=x/width-0.5 $$ 这样x1,y1就是我们最新获得的值,其取值范围均为[-0.5,0.5]。 为了实现云台始终追随目标,我们还需要将得到的坐标值转换为舵机旋转的角度,本实验云台为二自由度云台,如图1.1。下面的舵机控制偏航角与相机x轴相关,上面的舵机负责控制俯仰角与相机y轴相关,偏航角舵机的机械转角范围为[0,180],其中,当角度为0时,舵机朝向右侧,角度为180度时,舵机朝向左侧。俯仰角的机械转角范围为[90,180],其中,当角度为90度时,平台成水平,当角度为180度时,平台垂直水平面。 ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。

最新推荐

recommend-type

python 一维二维插值实例

总结来说,Python提供了强大的一维和二维插值工具,通过`scipy.interpolate`模块中的函数,能够方便地进行数据插值并处理各种复杂的插值问题。理解并掌握这些插值方法对于处理离散数据集和进行数值模拟至关重要。
recommend-type

python 画二维、三维点之间的线段实现方法

matplotlib库是Python最常用的绘图库之一,它提供了丰富的图形绘制功能,包括二维和三维图表。本文将详细介绍如何使用matplotlib库来绘制二维和三维点之间的线段。 首先,我们需要导入必要的模块。`mpl_toolkits....
recommend-type

python中字符串变二维数组的实例讲解

在Python编程中,有时我们需要将字符串转换为二维数组,特别是在处理数据输入或解析文本文件时。本篇文章将详细讲解如何实现这一过程,并提供一个具体的实例。 首先,我们要明确字符串的结构。假设我们有一个字符串...
recommend-type

Python绘图之二维图与三维图详解

本文将深入探讨如何使用`matplotlib`进行二维和三维图形的绘制,帮助工程师们提升技术水平。 首先,我们来看二维图的绘制。在Python中,通常使用`numpy`库来生成和处理数据,然后用`matplotlib.pyplot`模块进行绘图...
recommend-type

python NumPy ndarray二维数组 按照行列求平均实例

本篇文章将深入探讨如何使用NumPy的`mean()`函数来按照行或列求二维数组的平均值。 首先,让我们创建一个简单的二维数组`c`,如下所示: ```python c = np.array([[1, 2, 3, 4], [4, 5, 6, 7], [7, 8, 9, 10]]) ``...
recommend-type

探索数据转换实验平台在设备装置中的应用

资源摘要信息:"一种数据转换实验平台" 数据转换实验平台是一种专门用于实验和研究数据转换技术的设备装置,它能够帮助研究者或技术人员在模拟或实际的工作环境中测试和优化数据转换过程。数据转换是指将数据从一种格式、类型或系统转换为另一种,这个过程在信息科技领域中极其重要,尤其是在涉及不同系统集成、数据迁移、数据备份与恢复、以及数据分析等场景中。 在深入探讨一种数据转换实验平台之前,有必要先了解数据转换的基本概念。数据转换通常包括以下几个方面: 1. 数据格式转换:将数据从一种格式转换为另一种,比如将文档从PDF格式转换为Word格式,或者将音频文件从MP3格式转换为WAV格式。 2. 数据类型转换:涉及数据类型的改变,例如将字符串转换为整数,或者将日期时间格式从一种标准转换为另一种。 3. 系统间数据转换:在不同的计算机系统或软件平台之间进行数据交换时,往往需要将数据从一个系统的数据结构转换为另一个系统的数据结构。 4. 数据编码转换:涉及到数据的字符编码或编码格式的变化,例如从UTF-8编码转换为GBK编码。 针对这些不同的转换需求,一种数据转换实验平台应具备以下特点和功能: 1. 支持多种数据格式:实验平台应支持广泛的数据格式,包括但不限于文本、图像、音频、视频、数据库文件等。 2. 可配置的转换规则:用户可以根据需要定义和修改数据转换的规则,包括正则表达式、映射表、函数脚本等。 3. 高度兼容性:平台需要兼容不同的操作系统和硬件平台,确保数据转换的可行性。 4. 实时监控与日志记录:实验平台应提供实时数据转换监控界面,并记录转换过程中的关键信息,便于调试和分析。 5. 测试与验证机制:提供数据校验工具,确保转换后的数据完整性和准确性。 6. 用户友好界面:为了方便非专业人员使用,平台应提供简洁直观的操作界面,降低使用门槛。 7. 强大的扩展性:平台设计时应考虑到未来可能的技术更新或格式标准变更,需要具备良好的可扩展性。 具体到所给文件中的"一种数据转换实验平台.pdf",它应该是一份详细描述该实验平台的设计理念、架构、实现方法、功能特性以及使用案例等内容的文档。文档中可能会包含以下几个方面的详细信息: - 实验平台的设计背景与目的:解释为什么需要这样一个数据转换实验平台,以及它预期解决的问题。 - 系统架构和技术选型:介绍实验平台的系统架构设计,包括软件架构、硬件配置以及所用技术栈。 - 核心功能与工作流程:详细说明平台的核心功能模块,以及数据转换的工作流程。 - 使用案例与操作手册:提供实际使用场景下的案例分析,以及用户如何操作该平台的步骤说明。 - 测试结果与效能分析:展示平台在实际运行中的测试结果,包括性能测试、稳定性测试等,并进行效能分析。 - 问题解决方案与未来展望:讨论在开发和使用过程中遇到的问题及其解决方案,以及对未来技术发展趋势的展望。 通过这份文档,开发者、测试工程师以及研究人员可以获得对数据转换实验平台的深入理解和实用指导,这对于产品的设计、开发和应用都具有重要价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

ggflags包的国际化问题:多语言标签处理与显示的权威指南

![ggflags包的国际化问题:多语言标签处理与显示的权威指南](https://www.verbolabs.com/wp-content/uploads/2022/11/Benefits-of-Software-Localization-1024x576.png) # 1. ggflags包介绍及国际化问题概述 在当今多元化的互联网世界中,提供一个多语言的应用界面已经成为了国际化软件开发的基础。ggflags包作为Go语言中处理多语言标签的热门工具,不仅简化了国际化流程,还提高了软件的可扩展性和维护性。本章将介绍ggflags包的基础知识,并概述国际化问题的背景与重要性。 ## 1.1
recommend-type

如何使用MATLAB实现电力系统潮流计算中的节点导纳矩阵构建和阻抗矩阵转换,并解释这两种矩阵在潮流计算中的作用和差异?

在电力系统的潮流计算中,MATLAB提供了一个强大的平台来构建节点导纳矩阵和进行阻抗矩阵转换,这对于确保计算的准确性和效率至关重要。首先,节点导纳矩阵是电力系统潮流计算的基础,它表示系统中所有节点之间的电气关系。在MATLAB中,可以通过定义各支路的导纳值并将它们组合成矩阵来构建节点导纳矩阵。具体操作包括建立各节点的自导纳和互导纳,以及考虑变压器分接头和线路的参数等因素。 参考资源链接:[电力系统潮流计算:MATLAB程序设计解析](https://wenku.csdn.net/doc/89x0jbvyav?spm=1055.2569.3001.10343) 接下来,阻抗矩阵转换是
recommend-type

使用git-log-to-tikz.py将Git日志转换为TIKZ图形

资源摘要信息:"git-log-to-tikz.py 是一个使用 Python 编写的脚本工具,它能够从 Git 版本控制系统中的存储库生成用于 TeX 文档的 TIkZ 图。TIkZ 是一个用于在 LaTeX 文档中创建图形的包,它是 pgf(portable graphics format)库的前端,广泛用于创建高质量的矢量图形,尤其适合绘制流程图、树状图、网络图等。 此脚本基于 Michael Hauspie 的原始作品进行了更新和重写。它利用了 Jinja2 模板引擎来处理模板逻辑,这使得脚本更加灵活,易于对输出的 TeX 代码进行个性化定制。通过使用 Jinja2,脚本可以接受参数,并根据参数输出不同的图形样式。 在使用该脚本时,用户可以通过命令行参数指定要分析的 Git 分支。脚本会从当前 Git 存储库中提取所指定分支的提交历史,并将其转换为一个TIkZ图形。默认情况下,脚本会将每个提交作为 TIkZ 的一个节点绘制,同时显示提交间的父子关系,形成一个树状结构。 描述中提到的命令行示例: ```bash git-log-to-tikz.py master feature-branch > repository-snapshot.tex ``` 这个命令会将 master 分支和 feature-branch 分支的提交日志状态输出到名为 'repository-snapshot.tex' 的文件中。输出的 TeX 代码使用TIkZ包定义了一个 tikzpicture 环境,该环境可以被 LaTeX 编译器处理,并在最终生成的文档中渲染出相应的图形。在这个例子中,master 分支被用作主分支,所有回溯到版本库根的提交都会包含在生成的图形中,而并行分支上的提交则会根据它们的时间顺序交错显示。 脚本还提供了一个可选参数 `--maketest`,通过该参数可以执行额外的测试流程,但具体的使用方法和效果在描述中没有详细说明。一般情况下,使用这个参数是为了验证脚本的功能或对脚本进行测试。 此外,Makefile 中提供了调用此脚本的示例,说明了如何在自动化构建过程中集成该脚本,以便于快速生成所需的 TeX 图形文件。 此脚本的更新版本允许用户通过少量参数对生成的图形进行控制,包括但不限于图形的大小、颜色、标签等。这为用户提供了更高的自定义空间,以适应不同的文档需求和审美标准。 在使用 git-log-to-tikz.py 脚本时,用户需要具备一定的 Python 编程知识,以理解和操作 Jinja2 模板,并且需要熟悉 Git 和 TIkZ 的基本使用方法。对于那些不熟悉命令行操作的用户,可能需要一些基础的学习来熟练掌握该脚本的使用。 最后,虽然文件名称列表中只列出了 'git-log-to-tikz.py-master' 这一个文件,但根据描述,该脚本应能支持检查任意数量的分支,并且在输出的 TeX 文件中使用 `tikzset` 宏来轻松地重新设置图形的样式。这表明脚本具有较好的扩展性和灵活性。"