VMC_ACC_VehHoldReq*0x80 + VMC_ADAS_DBSReq*0x20 + VMC_ADAS_FaultSta*0x10 + VMC_ADAS_AEBReq*0x2
时间: 2024-08-14 22:01:43 浏览: 96
这个表达式看起来像是一个十六进制数的组合,用于指示某个车辆通信或电子系统模块的不同功能请求状态。VMC_ACC_VehHoldReq(车辆保持请求)可能是关于车辆巡航控制系统的指令,值为0x80表示开启此功能;VMC_ADAS_DBSReq(高级驾驶辅助系统数据库请求)指代ADAS(Advanced Driver Assistance System)数据查询,0x20代表激活该请求;VMC_ADAS_FaultSta(ADAS故障状态)标识是否存在故障,0x10表示存在故障信息;最后,VMC_ADAS_AEBReq(自动紧急制动请求)可能与防碰撞系统有关,0x2表示AEB功能正在请求启动。
总结来说,这是一个用于组合不同ADAS和车辆控制功能请求的状态字节码,通过将这些单独的值相加,我们可以得到整体的系统需求情况。
相关问题
close all; dataset=importdata('D:\GA\task.txt'); H=15; noise=1e-5; ptr=1e-2; rho=10; k=4; X=dataset(:,2); Y=dataset(:,3); taskcycle=dataset(:,5); tasksize=10*dataset(:,4); XI=dataset(:,6); YI=dataset(:,7); VMc=[200 170 140 110 80 70 60 50 40 30 25 20 15 12 9 6]; size=15; G=900; F=0.3; cr=0.9; tasknum=length(X); VMnum=tasknum; Chrom=DADE_initial2(size,tasknum); gen=1; best=Chrom(1,:); besttime=zeros(G,1); for i=2:size if DEDA_Fit(Chrom(i,:),X,Y,tasknum,tasksize,taskcycle,XI,YI,VMnum,VMc,H,ptr,rho,noise,k)<DEDA_Fit(best,X,Y,tasknum,tasksize,taskcycle,XI,YI,VMnum,VMc,H,ptr,rho,noise,k) best=Chrom(i,:); end end besttime(1)=DEDA_Fit(best,X,Y,tasknum,tasksize,taskcycle,XI,YI,VMnum,VMc,H,ptr,rho,noise,k); while gen <=G Chrom=DEDA_mutation_crossover_select(Chrom,X,Y,tasknum,tasksize,taskcycle,XI,YI,VMnum,VMc,H,ptr,rho,noise,size,k,F,cr); for i=1:size if DEDA_Fit(Chrom(i,:),X,Y,tasknum,tasksize,taskcycle,XI,YI,VMnum,VMc,H,ptr,rho,noise,k)<DEDA_Fit(best,X,Y,tasknum,tasksize,taskcycle,XI,YI,VMnum,VMc,H,ptr,rho,noise,k) best=Chrom(i,:); end end besttime(gen)=DEDA_Fit(best,X,Y,tasknum,tasksize,taskcycle,XI,YI,VMnum,VMc,H,ptr,rho,noise,k); gen=gen+1; end plot(besttime);把这段代码用Java实现
对于这段代码的Java实现,我们需要将其进行逐行转换。以下是Java实现:
```java
import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;
public class Main {
public static void main(String[] args) throws FileNotFoundException {
double[][] dataset = readData("D:\\GA\\task.txt");
double H = 15;
double noise = 1e-5;
double ptr = 1e-2;
double rho = 10;
int k = 4;
double[] X = getColumn(dataset, 1);
double[] Y = getColumn(dataset, 2);
double[] taskcycle = getColumn(dataset, 4);
double[] tasksize = multiply(getColumn(dataset, 3), 10);
double[] XI = getColumn(dataset, 5);
double[] YI = getColumn(dataset, 6);
int[] VMc = {200, 170, 140, 110, 80, 70, 60, 50, 40, 30, 25, 20, 15, 12, 9, 6};
int size = 15;
int G = 900;
double F = 0.3;
double cr = 0.9;
int tasknum = X.length;
int VMnum = tasknum;
double[][] Chrom = DADE_initial2(size, tasknum);
int gen = 1;
double[] best = Chrom[0];
double[] besttime = new double[G];
for (int i = 1; i < size; i++) {
if (DEDA_Fit(Chrom[i], X, Y, tasknum, tasksize, taskcycle, XI, YI, VMnum, VMc, H, ptr, rho, noise, k) < DEDA_Fit(best, X, Y, tasknum, tasksize, taskcycle, XI, YI, VMnum, VMc, H, ptr, rho, noise, k)) {
best = Chrom[i];
}
}
besttime[0] = DEDA_Fit(best, X, Y, tasknum, tasksize, taskcycle, XI, YI, VMnum, VMc, H, ptr, rho, noise, k);
while (gen <= G) {
Chrom = DEDA_mutation_crossover_select(Chrom, X, Y, tasknum, tasksize, taskcycle, XI, YI, VMnum, VMc, H, ptr, rho, noise, size, k, F, cr);
for (int i = 0; i < size; i++) {
if (DEDA_Fit(Chrom[i], X, Y, tasknum, tasksize, taskcycle, XI, YI, VMnum, VMc, H, ptr, rho, noise, k) < DEDA_Fit(best, X, Y, tasknum, tasksize, taskcycle, XI, YI, VMnum, VMc, H, ptr, rho, noise, k)) {
best = Chrom[i];
}
}
besttime[gen - 1] = DEDA_Fit(best, X, Y, tasknum, tasksize, taskcycle, XI, YI, VMnum, VMc, H, ptr, rho, noise, k);
gen++;
}
plot(besttime);
}
private static double[][] readData(String filename) throws FileNotFoundException {
Scanner scanner = new Scanner(new File(filename));
double[][] data = new double[100][8];
int i = 0;
while (scanner.hasNextLine()) {
String[] line = scanner.nextLine().split(" ");
for (int j = 0; j < line.length; j++) {
data[i][j] = Double.parseDouble(line[j]);
}
i++;
}
return data;
}
private static double[] getColumn(double[][] matrix, int col) {
double[] column = new double[matrix.length];
for (int i = 0; i < matrix.length; i++) {
column[i] = matrix[i][col];
}
return column;
}
private static double[] multiply(double[] array, int factor) {
double[] result = new double[array.length];
for (int i = 0; i < array.length; i++) {
result[i] = array[i] * factor;
}
return result;
}
private static void plot(double[] data) {
// implementation of plot method is omitted
}
private static double[][] DADE_initial2(int size, int tasknum) {
// implementation of DADE_initial2 method is omitted
return new double[size][tasknum];
}
private static double[][] DEDA_mutation_crossover_select(double[][] chrom, double[] x, double[] y, int tasknum, double[] tasksize, double[] taskcycle, double[] XI, double[] YI, int VMnum, int[] VMc, double H, double ptr, double rho, double noise, int popsize, int k, double f, double cr) {
// implementation of DEDA_mutation_crossover_select method is omitted
return chrom;
}
private static double DEDA_Fit(double[] chrom, double[] x, double[] y, int tasknum, double[] tasksize, double[] taskcycle, double[] XI, double[] YI, int VMnum, int[] VMc, double H, double ptr, double rho, double noise, int k) {
// implementation of DEDA_Fit method is omitted
return 0;
}
}
```
需要注意的是,这段代码中还有三个方法没有给出实现,分别是`DADE_initial2`、`DEDA_mutation_crossover_select`和`DEDA_Fit`,需要结合具体实现进行编写。
vmc = @(x, y) sqrt(x.^2 - x.*y + y.^2); vmc1 = @(x, y) x.^2 - x.*y + y.^2; trc = @(x, y) 0.5 * max(cat(3, abs(x - y), abs(x), abs(y)), [], 3); xx = linspace(-2, 2, 101); yy = linspace(-2, 2, 101); [X, Y] = ndgrid(xx, yy); [C,h] = contour(X, Y, vmc(X, Y), [1 1]);给contour绘制的曲线增加点状标识
您可以使用 `scatter` 函数在 `contour` 绘图上增加点状标识。具体来说,您需要先将 `contour` 绘图的 `handle` 作为 `scatter` 函数的第一个输入参数,然后设置点的位置和其他参数。以下是一个简单的示例:
```matlab
% 定义函数和绘图区域
vmc = @(x, y) sqrt(x.^2 - x.*y + y.^2);
xx = linspace(-2, 2, 101);
yy = linspace(-2, 2, 101);
[X, Y] = ndgrid(xx, yy);
% 绘制等高线图和点状标识
[C, h] = contour(X, Y, vmc(X, Y), [1 1]);
hold on;
scatterHandle = scatter(C(1,:), C(2,:), 'r');
```
在上面的代码中,我们首先定义了一个函数 `vmc` 和绘图区域。然后,我们使用 `contour` 函数绘制了函数的等高线图,并且只显示等高线值为 1 的曲线。接着,我们使用 `scatter` 函数在等高线图上增加点状标识,其中 `C(1,:)` 和 `C(2,:)` 是等高线曲线上的点的位置,`'r'` 是点的颜色。最后,我们使用 `hold on` 命令将等高线图和点状标识保持在同一张图中。
需要注意的是,`contour` 函数返回的等高线数据是一个 2xN 的矩阵,其中第一行是等高线曲线上点的 x 坐标,第二行是等高线曲线上点的 y 坐标。因此,我们可以直接将等高线数据作为 `scatter` 函数的第一个参数。
阅读全文