ViLD:OPEN-VOCABULARY OBJECT DETECTION VIA VISION AND LANGUAGE KNOWLEDGE DISTILLATION

时间: 2025-03-22 13:05:13 浏览: 27

ViLD 方法及其在开放词汇对象检测中的应用

背景介绍

开放词汇对象检测(Open-Vocabulary Object Detection, OVD)旨在通过利用大量未标注的数据和跨模态的知识,扩展传统目标检测器的能力,使其能够识别超出训练集中已知类别的新类别。这种方法的核心在于结合视觉和语言的信息,以增强模型对未知概念的理解能力。

ViLD 的核心机制

ViLD 是一种基于视觉与语言知识蒸馏的技术,用于解决开放词汇对象检测问题。它引入了两种主要的学习方式:文本嵌入学习(ViLD-text)和图像嵌入学习(ViLD-image)。这两种方法分别从不同角度优化模型的表现:

  • 文本嵌入学习(ViLD-text):该模块通过预先训练的语言模型提取语义特征,并将其作为指导信号融入到目标检测框架中[^1]。这种方式有助于捕捉更广泛的语义信息,特别是在处理新颖或少见的类别时表现出显著优势。

  • 图像嵌入学习(ViLD-image):此部分依赖于大规模预训练的视觉表示,专注于提升模型对于具体视觉模式的认知精度。这种策略特别适合强化那些具有明显外观特性的物体检测效果[^2]。

上述两者的有机结合不仅实现了性能上的互补,而且有效缓解了单一路径可能带来的局限性——即当单独采用任一方向进行优化时所面临的 trade-off 问题[^3]。

实验验证与成果展示

通过对多种评估指标下的对比分析发现,在实际应用场景下,融合后的 ViLD 方案相较于仅依靠文字提示或者单纯依赖图片理解的传统手段均展现出更高的准确性(APr)[^4]。尤其值得注意的是,相比完全受控环境下的标准监督学习模型(Supervised-RFS),即使是在面对稀少样本的小众分类项上,依然保持住了至少高出近四个百分点的整体效能增益水平。

此外,为了进一步挖掘潜在的最佳配置选项,研究人员还在附加材料里详尽探讨了一系列有关超参数调整的可能性方案表格(见附录表7)。这些努力最终促成了当前版本能够在多个公开测试集上面取得领先位置的好成绩。

def vild_model(image_embeddings, text_embeddings):
    """
    Simulates the combination process within a simplified version of VILD model.
    
    Args:
        image_embeddings (Tensor): Pre-trained embeddings from images.
        text_embeddings (Tensor): Pre-trained embeddings from texts.

    Returns:
        Tensor: Combined embedding after fusion step.
    """
    combined_embedding = torch.cat((image_embeddings, text_embeddings), dim=1)
    output = nn.Linear(combined_embedding.size(-1), num_classes)(combined_embedding)
    return F.softmax(output, dim=-1)

以上代码片段示意了一个简化版VILD架构如何将来自两个域的不同类型的输入结合起来形成最后预测概率分布的过程。


向AI提问 loading 发送消息图标

相关推荐

大学生入口

最新推荐

recommend-type

### 制造业上市公司高质量发展研究报告(2023年)

内容概要:报告由中国信息通信研究院发布,旨在评估制造业上市公司高质量发展,强调制造业高质量发展的重要性,并构建了涵盖创新力、竞争力、影响力、贡献力四大维度的评价体系。通过对3500余家制造业上市公司2022年年报数据的综合评估,评选出百强企业。研究显示,百强企业专注主业,半数以上成长为制造业单项冠军;民营企业在盈利效率、创新发展方面表现优异;东部地区引领发展,装备制造业领先,新能源产业呈现爆发性增长。百强企业在科技创新、质效提升、持续增长、稳定就业等方面发挥重要作用,但也存在品牌建设和创新水平差距、领军企业竞争力提升空间、高端领域龙头企业培育不足等问题。 适用人群:制造业企业管理者、政策制定者、投资者及相关研究人员。 使用场景及目标:①帮助企业管理者了解行业发展趋势,提升企业竞争力;②为政策制定者提供决策参考,推动制造业高质量发展;③为投资者提供投资参考,识别优质企业;④为研究人员提供详实数据,助力学术研究。 其他说明:报告建议从重突破促升级、重创新补短板、重质量树品牌三个方面进一步推进制造业企业高质量发展,以加快建设具有全球竞争力的一流企业。
recommend-type

异步电机无感矢量控制仿真:关键技术和代码实现技巧

内容概要:本文详细介绍了异步电机无感矢量控制仿真的关键技术与常见问题解决方案。首先讨论了坐标变换(Clarke和Park变换)的基础操作及其注意事项,强调了正确选择系数的重要性。接下来深入探讨了滑模观测器的设计与优化方法,包括使用查表法替代三角函数计算以提高效率,以及加入低通滤波器减少高频抖振。此外,文章还涉及了速度估算的方法,如频域法和改进型滑模观测器的应用,并提供了具体的Python和Matlab代码片段。最后,针对电流环控制提出了前馈补偿机制,确保在突加负载情况下仍能保持良好的电流跟踪效果。文中多次提到调参技巧,特别是对于PI参数的选择给出了实用建议。 适合人群:从事电机控制系统研究与开发的技术人员,尤其是对异步电机无感矢量控制感兴趣的工程师。 使用场景及目标:适用于希望深入了解并掌握异步电机无感矢量控制仿真技术的研究人员和技术开发者。主要目标是在没有编码器的情况下实现对电机转速和扭矩的精确控制,同时提供详细的代码实现指导和调试经验。 其他说明:文章不仅提供了理论知识,还包括大量实际操作中的经验和教训,帮助读者避免常见的陷阱,快速搭建起有效的仿真环境。
recommend-type

(源码)基于Arduino的火箭动力学参数监测项目.zip

# 基于Arduino的火箭动力学参数监测项目 ## 项目简介 这是一个基于Arduino平台的火箭动力学参数监测项目,旨在通过Adafruit BMP280压力传感器和Adafruit LIS3DH加速度传感器收集火箭飞行过程中的环境数据和运动数据。项目结合了Adafruit的BMP280库和LIS3DH库,实现对传感器数据的读取、处理及初步分析。 ## 项目的主要特性和功能 1. 环境数据监测通过BMP280压力传感器,实时监测并记录火箭周围的气压、温度和海拔高度变化。 2. 运动数据监测借助LIS3DH加速度传感器,获取火箭在飞行过程中的加速度、速度及方向变化数据。 3. 数据处理与传输Arduino负责收集和初步处理这些数据,然后通过串行通信或其他方式将数据发送到地面站或飞行控制软件。 4. 安全与警报基于收集的数据,项目可设置警报阈值,当超过预设的安全限制时,触发警报或采取相应的安全措施。 ## 安装使用步骤
recommend-type

(源码)基于Arduino的EPSleepy智能家居控制系统.zip

# 基于Arduino的EPSleepy智能家居控制系统 ## 一、项目简介 EPSleepy是一个基于Arduino的智能家居控制系统原型。该项目旨在通过Arduino控制ESP32 WiFi和蓝牙板,结合MP3模块、shiftregister和按钮等硬件,实现智能家居的自动化控制。 ## 二、项目的主要特性和功能 1. 自动化控制通过Arduino代码控制ESP32板,实现家居设备的自动化控制。 2. 多种硬件支持支持MP3模块、shiftregister和按钮等硬件,实现音频播放、灯光控制、SD驱动等功能。 3. 模块化设计代码采用模块化设计,方便测试每个部分的功能,方便维护和调试。 4. 图形化界面可通过按钮和LED等硬件进行图形化操作和控制。 ## 三、安装使用步骤 1. 下载并解压项目源码文件。 2. 打开Arduino IDE,导入项目代码。 3. 连接硬件,包括ESP32板、MP3模块、shiftregister和按钮等。
recommend-type

Delphi 12.3控件之PowerPDF for Delphi11 FullSource.zip

Delphi 12.3控件之PowerPDF for Delphi11 FullSource.zip
recommend-type

易语言实现空白文本和字节集模块的嵌入汇编处理

易语言是一种简单易学的编程语言,它的语法结构与汉语接近,适合初学者快速掌握编程知识。易语言的特点是支持汉字编程,这让中文用户可以更容易地理解程序逻辑和结构。在易语言中嵌入汇编代码是一种高级编程技巧,可以用来提高程序运行的效率,尤其是在对性能要求较高的场景下。 标题中提到的“嵌入汇编取空白文本和字节集模块”是指在易语言程序中,通过嵌入汇编语言代码来实现对文本和字节集(字节序列)的处理,例如提取空白文本或生成空白字节集。 描述中提到的源码是指含有具体实现这一功能的易语言代码。源码中涉及的API(应用程序编程接口)包括API_GetProcessHeap、API_HeapAlloc、API_FillMemory、API_MessageBox 和 API_GetActiveWindow,这些API分别对应于获取进程堆、分配堆内存、填充内存、消息框显示以及获取活动窗口句柄的功能。 以下是详细的知识点: 1. 易语言编程基础:易语言是一种基于中文的编程语言,它提供了一套完整的开发环境,包括集成开发环境(IDE)、编译器、调试器等。易语言适合快速开发Windows平台下的应用程序。 2. 嵌入汇编技术:在易语言中嵌入汇编代码可以通过关键字“汇编”来实现。这种技术允许开发者直接使用低级语言的优势来优化关键代码段的性能,同时仍然保留易语言其他高级特性的便利性。 3. 字符串处理:在易语言中,空白文本指的是那些不包含任何有效字符的字符串。处理空白文本通常涉及检查字符串是否为空或仅包含空格、制表符等。取空白文本可能涉及到遍历字符串并移除这些空白字符。 4. 字节集处理:字节集通常用于表示二进制数据。易语言中的字节集可以看作是一个字节数组。取空白字节集可能意味着创建一个指定大小的字节集,其中所有元素都是零或特定的空白值。 5. API_GetProcessHeap:这个API用于获取当前进程的堆句柄,该堆由操作系统管理,可以用于动态分配内存。 6. API_HeapAlloc:此API用于从前面通过API_GetProcessHeap获取的进程堆中分配一块内存。在处理字节集时,往往需要动态地分配内存空间。 7. API_FillMemory:此API用于填充指定内存区域的数据。在创建空白字节集时,可以利用API_FillMemory将内存区域全部填充为零或其他指定的空白值。 8. API_MessageBox:此API用于显示一个消息框,允许程序向用户显示信息、警告、错误消息等。在嵌入汇编取空白文本和字节集模块中,可能会在遇到错误情况时使用消息框提示用户。 9. API_GetActiveWindow:此API用于获取当前活跃窗口的句柄。它在程序需要与用户交互时非常有用,例如在需要用户手动确认某些操作时。 理解上述知识点后,可以开始研究和分析易语言嵌入汇编取空白文本和字节集模块源码的具体实现细节。开发者可以利用易语言提供的这些功能和API来编写高效的代码,同时也需要对汇编语言有一定的了解,以便能够正确地嵌入和使用汇编代码。在实际开发过程中,需要注意内存的申请与释放,避免内存泄漏等问题,确保程序的稳定性和效率。
recommend-type

集成电路制造中的互扩散效应分析:理论与实验的融合

# 摘要 互扩散效应是影响集成电路性能的关键因素之一,涉及材料中的物质如何通过扩散过程影响彼此的分布和浓度。本文首先概述了互扩散效应的基本理论,
recommend-type

最小二乘法是什么

<think>嗯,用户问的是最小二乘法,我得先理清楚这个概念。首先,最小二乘法是统计学中的一种方法,用来求解线性回归问题。对吧?不过得确保自己理解正确,不能出错。 首先,要解释最小二乘法的目的,应该是找到一条直线(或者更一般的曲线),使得这条曲线与数据点之间的误差平方和最小。这点没错,记得误差是实际值和预测值之差,平方之后求和,最小化这个总和。 然后,可能需要提到它的应用场景,比如线性回归,参数估计这些。用户可能想知道为什么叫“最小二乘”,是不是因为平方的关系?是的,平方就是“二乘”的意思,中文里“二乘”可能是指平方,所以这个名字挺贴切的。 接下来,可能需要数学公式的说明。这里要注意系统
recommend-type

实现增加和修改共用页面的Struts2技术实践

在现代的Web应用程序开发中,用户界面的灵活性和代码的可重用性是两个重要的考虑因素。为了减少代码冗余并提高开发效率,经常会采用一些设计模式和策略。其中一种方法是将数据的增加和修改操作放在同一个页面进行处理,这样的设计不仅节省了页面编写的劳动量,还提高了用户体验。在本知识点中,我们将具体探讨在使用Struts2框架和JSP技术时,如何实现增加和修改共用一个页面的策略。 首先,我们需要了解Struts2框架的基本工作原理。Struts2是一个基于MVC(Model-View-Controller)模式的Web应用框架。它将应用程序分为三个主要部分:模型(Model)、视图(View)和控制器(Controller),以便于分离业务逻辑、用户界面和控制流程。 在实现增加和修改共用页面的场景中,Struts2提供了Action机制,用于处理来自客户端的请求并返回响应。Action中通常包含业务逻辑处理以及与模型的交互,而Action与页面视图的映射则是通过struts.xml配置文件进行声明式控制的。 接下来,让我们深入到具体实现步骤: 1. **共用Action设计**: - 创建一个Action类,用于封装增加和修改操作的公共处理逻辑。 - 在Action类中使用不同的方法来处理增加和修改请求。通常,可以通过ActionContext或者方法的参数来判断是新增操作还是修改操作。 2. **请求参数的处理**: - 在共用的Action类中,根据不同的操作类型,从请求参数中解析出不同的数据,比如新增时,参数可能都是空的或者新创建的数据对象;而修改时,参数则包含了需要更新的数据和对应的标识(如ID)。 - 使用Struts2提供的OGNL(Object-Graph Navigation Language)来访问请求参数,并根据参数决定操作逻辑。 3. **视图页面设计**: - 设计一个JSP页面作为视图,用于展示表单以及提供用户操作界面。 - 在表单中,需要包含一个隐藏字段用于标识是新增还是修改操作。这样在表单提交时,可以携带此标识信息到Action进行相应的逻辑处理。 4. **struts.xml配置**: - 在struts.xml中配置Action,定义不同请求与Action方法之间的映射关系。 - 配置result元素,使得根据不同的操作类型返回不同的视图页面,或者在执行完Action方法后进行重定向。 5. **控制流程**: - 当用户访问增加或修改页面时,服务器会根据请求中携带的参数来决定是展示新增表单还是修改表单。 - 用户填写表单并提交后,Action会根据传入的参数判断是增加操作还是修改操作,并进行相应处理。 6. **结果处理**: - 在Action中,执行业务逻辑后,需要定义合适的result来处理操作结果,例如成功时返回到列表页面,失败时返回错误信息到原页面。 总结以上步骤,我们得到了一个完整的“增加和修改共用一个页面”的实现方案。通过这种设计,我们不仅简化了代码量,还保证了操作的灵活性和可维护性。在实际开发中,使用Struts2框架结合JSP技术可以非常有效地实现此功能。重要的是,开发者需要遵循MVC设计模式,合理地组织代码结构,并通过良好的设计使得项目易于理解和维护。
recommend-type

外延工艺改进:提升集成电路制造效率的秘籍

# 摘要 集成电路制造是现代电子工业的基石,而外延工艺作为其核心环节,对于集成电路的性能和质量具有决定性作用。本文综述了集成电路外延工艺的理论基础、实践技术及优化策略,并探讨了制造效率提升的途径。通过对外延层生长机制、技术分类及其质量评估方法的分析,深入讨论了提升外延层均匀性和缩短工艺周期的技术手段。此外,本文还讨论了新兴技术对外延工艺的影响,行业
手机看
程序员都在用的中文IT技术交流社区

程序员都在用的中文IT技术交流社区

专业的中文 IT 技术社区,与千万技术人共成长

专业的中文 IT 技术社区,与千万技术人共成长

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

客服 返回
顶部