编程实现基于多元线性回归的房价预测 从数据文件加载数据集 2.将数据集划分为训练集和测试集 数据标准化处理 将训练集和测试集进一步划分为样本和标签5.读取小批量样本6.初始化模型参数和定义模型7.定义优化算法8.训练9.计算并输出训练误差和测试误差的代码
时间: 2024-09-12 17:17:12 浏览: 54
机器学习房价预测数据集,多元线性回归预测房价数据集
5星 · 资源好评率100%
基于多元线性回归的房价预测是机器学习中一个常见的回归问题示例。下面是一个简化的流程,用伪代码的形式来展示如何实现这一预测过程:
1. 从数据文件加载数据集:
```python
import pandas as pd
# 加载数据集
data = pd.read_csv('housing_data.csv')
```
2. 将数据集划分为训练集和测试集:
```python
from sklearn.model_selection import train_test_split
# 假设 'X' 是特征矩阵,'y' 是目标变量(房价)
X = data.drop('price', axis=1) # 特征列
y = data['price'] # 房价列
# 划分训练集和测试集,通常比例为80%训练和20%测试
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
3. 数据标准化处理:
```python
from sklearn.preprocessing import StandardScaler
# 初始化标准化器
scaler = StandardScaler()
# 对训练集和测试集的特征进行标准化处理
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```
4. 将训练集和测试集进一步划分为样本和标签:
```python
# 样本是特征数据,标签是对应的目标值(在这里是房价)
# 已经在前面的步骤中完成,X_train, y_train 和 X_test, y_test 分别代表训练和测试的样本和标签
```
5. 读取小批量样本:
```python
# 假设使用梯度下降法,需要定义小批量样本的大小
batch_size = 32
# 用于批量数据的生成器
def get_minibatches(X, y, batch_size):
for i in range(0, X.shape[0], batch_size):
yield (X[i:i + batch_size, :], y[i:i + batch_size])
```
6. 初始化模型参数和定义模型:
```python
import numpy as np
# 初始化参数
num_features = X_train_scaled.shape[1]
weights = np.random.randn(num_features)
bias = np.random.randn()
# 定义线性回归模型
def predict(X, weights, bias):
return np.dot(X, weights) + bias
```
7. 定义优化算法(使用梯度下降法):
```python
learning_rate = 0.01
# 定义损失函数(均方误差)
def compute_loss(y_true, y_pred):
return ((y_true - y_pred) ** 2).mean()
# 定义梯度下降步骤
def update_weights(X, y_true, weights, bias, learning_rate):
y_pred = predict(X, weights, bias)
error = y_pred - y_true
dW = np.dot(X.T, error) / len(X)
dB = np.sum(error) / len(X)
weights -= learning_rate * dW
bias -= learning_rate * dB
```
8. 训练:
```python
num_epochs = 1000 # 定义训练的轮数
for epoch in range(num_epochs):
for X_batch, y_batch in get_minibatches(X_train_scaled, y_train, batch_size):
update_weights(X_batch, y_batch, weights, bias, learning_rate)
```
9. 计算并输出训练误差和测试误差:
```python
# 计算训练误差和测试误差
train_loss = compute_loss(y_train, predict(X_train_scaled, weights, bias))
test_loss = compute_loss(y_test, predict(X_test_scaled, weights, bias))
print(f"Training Error: {train_loss}")
print(f"Test Error: {test_loss}")
```
阅读全文