forstner角点检测python
时间: 2024-12-25 11:11:26 浏览: 3
Firstenberg角点检测算法是一种用于图像特征检测的经典计算机视觉技术,它主要用于识别图像中的兴趣点,例如边缘交汇处、角落等。在Python中,可以利用OpenCV库(cv2)来实现Firstenberg角点检测。以下是基本步骤:
1. 导入必要的库:
```python
import cv2
import numpy as np
```
2. 加载图像并转换为灰度图像,因为Firstenberg算法对灰度图像效果较好:
```python
img = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)
```
3. 应用Firstenberg算子,这个算子会对图像进行处理以突出角点:
```python
corners = cv2.cornerHarris(img, block_size=2, ksize=3, sigma=0.5) # 参数调整可能会有影响
```
4. 将结果转换为角点坐标,并应用非极大值抑制(Non-Maximum Suppression,NMS),以便去除假角点:
```python
# 设置阈值,通常较高的值会更保守地保留角点
threshold = 0.01 * corners.max()
corners = corners > threshold
# 应用NMS
corners_norm = normalize_corners(corners)
corners_peaks = cv2.goodFeaturesToTrack(corners_norm, **good_features_params)
peaks = np.int0(corners_peaks[:,0])
```
这里`good_features_params`是一个字典,包含如窗口大小、邻域响应阈值等其他参数。
5. 用得到的角点绘制到原图上:
```python
img_with_corners = cv2.drawChessboardCorners(img, pattern_size, peaks, corners.ravel())
cv2.imshow("Detected Corners", img_with_corners)
cv2.waitKey(0)
```
阅读全文