redis 分布式锁spring boot

时间: 2023-07-31 14:06:58 浏览: 61
Spring Boot整合Redis的方法有很多,主要有以下几种: 1. 在pom.xml中添加redis的starter依赖 2. 配置redis的连接信息(如主机名,端口号等) 3. 在Spring Boot项目中使用RedisTemplate或者StringRedisTemplate操作redis 具体实现可以参考官方文档或者网上教程。
相关问题

redis 分布式锁 java代码 spring boot

在 Spring Boot 中使用 Redis 实现分布式锁,你可以按照以下步骤进行: 1. 添加 Redis 依赖 在 `pom.xml` 文件中添加 Redis 相关的依赖: ```xml <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> ``` 2. 配置 Redis 连接 在 `application.properties` 或 `application.yml` 文件中配置 Redis 连接信息: ```properties spring.redis.host=127.0.0.1 spring.redis.port=6379 ``` 3. 创建分布式锁工具类 ```java import org.springframework.beans.factory.annotation.Autowired; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.stereotype.Component; import java.util.concurrent.TimeUnit; @Component public class RedisDistributedLock { @Autowired private RedisTemplate<String, String> redisTemplate; public boolean lock(String lockKey, String requestId, long expireTime) { Boolean success = redisTemplate.opsForValue().setIfAbsent(lockKey, requestId, expireTime, TimeUnit.MILLISECONDS); return success != null && success; } public boolean releaseLock(String lockKey, String requestId) { String value = redisTemplate.opsForValue().get(lockKey); if (value != null && value.equals(requestId)) { return redisTemplate.delete(lockKey); } return false; } } ``` 4. 在需要加锁的地方使用分布式锁 ```java import org.springframework.beans.factory.annotation.Autowired; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestController; @RestController @RequestMapping("/example") public class ExampleController { @Autowired private RedisDistributedLock distributedLock; @GetMapping("/lock") public String lockExample() { String lockKey = "exampleLock"; String requestId = UUID.randomUUID().toString(); long expireTime = 5000; // 锁的过期时间,单位为毫秒 // 尝试获取锁 boolean lockSuccess = distributedLock.lock(lockKey, requestId, expireTime); if (lockSuccess) { try { // 执行业务逻辑 Thread.sleep(2000); return "Success"; } catch (InterruptedException e) { e.printStackTrace(); } finally { // 释放锁 distributedLock.releaseLock(lockKey, requestId); } } return "Failed"; } } ``` 在上述代码中,首先创建了一个 `RedisDistributedLock` 的工具类,用来进行锁的获取和释放操作。然后,在需要加锁的地方调用 `lock()` 方法尝试获取锁,如果获取成功,则执行业务逻辑;最后,在业务逻辑执行完成后,调用 `releaseLock()` 方法释放锁。 注意:在上述示例中,使用了 `RedisTemplate` 作为 Redis 的操作模板,你可以根据实际情况进行调整和优化。另外,还可以对分布式锁进行进一步的优化,例如使用 Lua 脚本实现原子性操作等。

如何在Spring Boot中实现Redis分布式锁?

在Spring Boot中实现Redis分布式锁可以通过以下步骤: 1. 添加Redis依赖:在`pom.xml`文件中添加Redis的依赖,例如: ```xml <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> ``` 2. 配置Redis连接信息:在`application.properties`或`application.yml`文件中配置Redis连接信息,例如: ```properties spring.redis.host=127.0.0.1 spring.redis.port=6379 ``` 3. 创建Redis分布式锁实现类:创建一个实现了分布式锁接口的类,例如`RedisDistributedLock`,在该类中注入`StringRedisTemplate`用于操作Redis。 4. 实现加锁方法:在`RedisDistributedLock`类中实现加锁方法,可以使用Redis的`setnx`命令来进行加锁操作,例如: ```java public boolean lock(String key, String value, long expireTime) { Boolean success = redisTemplate.opsForValue().setIfAbsent(key, value, expireTime, TimeUnit.MILLISECONDS); return success != null && success; } ``` 5. 实现释放锁方法:在`RedisDistributedLock`类中实现释放锁方法,使用Redis的`del`命令来删除锁对应的键,例如: ```java public boolean unlock(String key) { return redisTemplate.delete(key); } ``` 6. 在业务代码中使用分布式锁:在需要加锁的代码块前后调用加锁和释放锁方法,例如: ```java @Autowired private RedisDistributedLock redisDistributedLock; public void doSomethingWithLock() { String lockKey = "my-lock"; String lockValue = UUID.randomUUID().toString(); long expireTime = 10000; // 过期时间,单位为毫秒 try { boolean locked = redisDistributedLock.lock(lockKey, lockValue, expireTime); if (locked) { // 执行业务逻辑 } else { // 获取锁失败,可以进行重试或处理其他逻辑 } } finally { redisDistributedLock.unlock(lockKey); } } ``` 通过以上步骤,就可以在Spring Boot中实现Redis分布式锁。注意在使用分布式锁时需要考虑锁的粒度和超时处理等问题,以确保分布式锁的正确使用。

相关推荐

最新推荐

recommend-type

spring boot整合redis实现shiro的分布式session共享的方法

Spring Boot 整合 Redis 实现 Shiro 的分布式 Session 共享 Shiro 是一个优秀的 Java 安全框架,提供了强大的身份验证、授权和会话管理功能。然而,在分布式架构中,Shiro 的会话管理机制需要进行特殊处理,以便...
recommend-type

Spring Boot和Hazelcast使用详解

Spring Boot和Hazelcast使用详解 Spring Boot和Hazelcast使用详解是指如何将Hazelcast集成到Spring Boot项目中,以提高应用程序的性能。Hazelcast是一个内存分布式计算平台,用于管理数据并并行执行应用程序。它...
recommend-type

spring boot 防止重复提交实现方法详解

Spring Boot 防止重复提交实现方法详解 Spring Boot 防止重复提交是指在用户提交表单或请求时,防止同一客户端在短时间内对同一 URL 的重复提交,从而避免服务器端的处理压力和数据的一致性问题。下面将详细介绍 ...
recommend-type

基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示(毕业设计&课程设计)

基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 项目简介: 本选课系统开源协议基于GPL协议,仅用作交流学习用途。 本系统采用了前后端分离的开发模式,后端采用Springmvc+Hibernate框架。 前端使用AngularJs+JQuery+Bootstrap开发,并且使用前端构建工具Gulp。
recommend-type

51单片机模拟汽车左右转向灯控制系统的源代码和仿真电路

免费开源《基于51单片机的模拟汽车左右转向灯控制系统》的源代码和仿真电路,含c程序源码、Proteus仿真电路。 //功能:汽车左右转向灯程序 #include <REGX51.H> //包含头文件REGX51.H sbit LEDL1=P0^0; //定义P0.0引脚位名称为LEDL1,左前转向灯 sbit LEDL2=P0^1; //定义P0.1引脚位名称为LEDL2,左后转向灯 sbit LEDR1=P0^2; //定义P0.2引脚位名称为LEDR1,右前转向灯 sbit LEDR2=P0^3; //定义P0.3引脚位名称为LEDR2,右后转向灯 sbit S1=P1^0; //定义P1.0引脚位名称为S1,S1为0,左转向灯闪烁 sbit S2=P1^1; //定义P1.1引脚位名称为S2,S2为0,右转向灯闪烁 //函数名:delay //函数功能:实现软件延时 //形式参数:无符号整型变量i //返回值:无 void delay(unsigned int i) { wh
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。