filepath2 =r'E:\data_meteo\1nc\FZ_2' filepath3 =filepath2+'\\'+yearlist[index] filepath =Path(filepath3) print(filepath) filelist = list(filepath.glob('*.nc'))为啥filelist是空集

时间: 2024-04-18 14:23:58 浏览: 69
根据您提供的代码片段,如果`filelist`是空集,可能有以下几个原因: 1. 路径`filepath3`指向的目录中没有以`.nc`结尾的文件。请确保在`filepath3`目录下存在至少一个以`.nc`结尾的文件。 2. 路径`filepath3`指向的目录不存在。请检查`filepath2`和`yearlist[index]`变量的值,确保拼接后的路径是正确的。 3. `filepath3`路径中存在转义字符或无效字符。在Windows系统中,路径中的反斜杠`\`需要进行转义,可以使用原始字符串(在字符串前面加上字母`r`)来避免转义字符的问题。请检查`filepath2`和`yearlist[index]`变量的值,确保拼接后的路径没有问题。 请根据以上提示检查代码,并确保路径和文件的存在性。如果问题仍然存在,请提供更多的代码和上下文信息以便更好地帮助您解决问题。
相关问题

解释代码:if __name__ == "__main__": filepath = "E:\\t.S" selectNum = 4000 xlist, ylist, fileLines = readData(filepath)

这段代码中,`if __name__ == "__main__":` 是 Python 中特殊的语句,它表示当前的脚本文件被直接执行时,以下的代码块将被执行,如果被作为模块导入,则不会执行。这个语句通常用于测试脚本的功能。 接下来的代码将执行 `readData(filepath)` 函数,该函数从指定的文件路径 `filepath` 中读取数据,并将数据分为 `xlist` 和 `ylist` 两个列表,并返回文件的总行数 `fileLines`。 另外,这段代码还定义了一个变量 `selectNum`,它指定了要选择的数据个数。

def refresh_labels(self): data4 = self.la if not data4.endswith('.xlsx'): data4 += '.xlsx' wo = pinjie filepath = os.path.join(wo, data4) if not os.path.exists(filepath): wb = openpyxl.Workbook() wb.save(filepath) else: wb = openpyxl.load_workbook(filepath) current_time = datetime.datetime.now().time() start_time_1 = datetime.time(8, 0, 0) # 早上8点 end_time_1 = datetime.time(20, 0, 0) # 下午7点 start_time_2 = datetime.time(20, 0, 0) # 晚上8点 end_time_2 = datetime.time(7, 0, 0) # 早上7点 for i, sheet_name in enumerate(self.sheet_names): filtered_rows = [] # 优化第二段代码:检查文件是否存在 filepath = os.path.join(pinjie, self.la + '.xlsx') if os.path.exists(filepath): workbook = xl.load_workbook(filepath) sheet = workbook.active today = datetime.datetime.now().strftime('%Y/%m/%d') cell_value = sheet.cell(row=1, column=1).value if cell_value is not None and cell_value != '': for row in sheet.iter_rows(min_row=1): if row[2].value == today and row[8].value == sheet_name: datetime_obj = datetime.datetime.strptime(row[3].value, '%H:%M:%S') row_time = datetime_obj.time() if start_time_1 <= row_time <= end_time_1 and start_time_1 <= current_time <= end_time_1: filtered_rows.append(row) elif start_time_2 <= row_time or current_time <= end_time_2: filtered_rows.append(row)

这段代码看起来像是Python中处理Excel文件的代码,可以看到它使用了openpyxl库。它的功能是读取一个Excel文件,并对其中的数据进行筛选和过滤,只返回符合特定时间范围的行。具体来说,它首先检查文件是否存在,如果不存在则创建一个新的Excel文件。然后对于每个sheet,它会检查第一行第一列的值来确定当前的日期,然后检查每行的日期和sheet名称是否匹配,并且时间是否在特定范围内。如果符合条件,就将该行添加到筛选结果中,并返回最终的结果。
阅读全文

相关推荐

def refresh_labels(self): data4 = self.la # 连接到 SQLite 数据库文件,并创建游标对象 cursor() conn = sqlite3.connect(filepath) cursor = conn.cursor() data41 = str(self.la) if not data4.endswith('.xlsx'): data4 += '.xlsx' wo = pinjie filepath = os.path.join(wo, data4) if not os.path.exists(filepath): wb = openpyxl.Workbook() wb.save(filepath) else: wb = openpyxl.load_workbook(filepath) for i, sheet_name in enumerate(self.sheet_names): label = tk.Label(self.unique_listbox, text=sheet_name) label.grid(row=i // 3, column=i % 3, sticky="ew", padx=1, pady=1) current_time = datetime.datetime.now().time() start_time_1 = datetime.time(8, 0, 0) # 早上8点 end_time_1 = datetime.time(20, 0, 0) # 下午7点 start_time_2 = datetime.time(20, 0, 0) # 晚上8点 end_time_2 = datetime.time(7, 0, 0) # 早上7点 for i, sheet_name in enumerate(self.sheet_names): filtered_rows = [] # 优化第二段代码:检查文件是否存在 filepath = os.path.join(pinjie, self.la + '.xlsx') if os.path.exists(filepath): workbook = xl.load_workbook(filepath) sheet = workbook.active today = datetime.datetime.now().strftime('%Y/%m/%d') cell_value = sheet.cell(row=1, column=1).value if cell_value is not None and cell_value != '': for row in sheet.iter_rows(min_row=1): if row[2].value == today and row[8].value == sheet_name: datetime_obj = datetime.datetime.strptime(row[3].value, '%H:%M:%S') row_time = datetime_obj.time() if start_time_1 <= row_time <= end_time_1 and start_time_1 <= current_time <= end_time_1: filtered_rows.append(row) elif start_time_2 <= row_time or current_time <= end_time_2: filtered_rows.append(row) label = self.unique_listbox.grid_slaves(row=i // 3, column=i % 3)[0] if filtered_rows: label.config(text=f"{sheet_name} - 已點檢", fg="green") else: label.config(text=f"{sheet_name} - 未點檢", fg="red")什麽意思

替换掉此代码里的import cv2模块,import os import numpy as np import nibabel as nib import imageio import cv2 def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation\\" + "segmentation-" + name filepath_vol = niifilepath + "volume\\" + "volume-" +name savepath_seg = savepath + "segmentation\\" savepath_vol = savepath + "volume\\" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片 if silce_seg.max() == 0: continue else: silce_seg = (silce_seg-silce_seg.min())/(silce_seg.max() - silce_seg.min())*255 silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 # 将切片信息保存为png格式 return num if __name__ == '__main__': path= 'E:\\dataset\\LiTS17\\' savepath = 'E:\\dataset\\LiTS17\\2d\\' filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename)

将代码中的import cv2模块替换掉,import os import numpy as np import nibabel as nib import imageio import cv2 def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation\\" + "segmentation-" + name filepath_vol = niifilepath + "volume\\" + "volume-" +name savepath_seg = savepath + "segmentation\\" savepath_vol = savepath + "volume\\" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片 if silce_seg.max() == 0: continue else: silce_seg = (silce_seg-silce_seg.min())/(silce_seg.max() - silce_seg.min())*255 silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 # 将切片信息保存为png格式 return num if __name__ == '__main__': path= 'E:\\dataset\\LiTS17\\' savepath = 'E:\\dataset\\LiTS17\\2d\\' filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename)

替换掉import cv2,将代码import os import numpy as np import nibabel as nib import imageio import cv2 def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation\\" + "segmentation-" + name filepath_vol = niifilepath + "volume\\" + "volume-" +name savepath_seg = savepath + "segmentation\\" savepath_vol = savepath + "volume\\" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片 if silce_seg.max() == 0: continue else: silce_seg = (silce_seg-silce_seg.min())/(silce_seg.max() - silce_seg.min())*255 silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 # 将切片信息保存为png格式 return num if __name__ == '__main__': path= 'E:\\dataset\\LiTS17\\' savepath = 'E:\\dataset\\LiTS17\\2d\\' filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename)改成有相同作用的代码

import os import numpy as np import nibabel as nib import imageio import cv2 def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation" + "segmentation-" + name filepath_vol = niifilepath + "volume" + "volume-" + name savepath_seg = savepath + "segmentation" savepath_vol = savepath + "volume" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片 if silce_seg.max() == 0: continue else: silce_seg = (silce_seg - silce_seg.min()) / (silce_seg.max() - silce_seg.min()) * 255 silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 # 将切片信息保存为png格式 return num if name == 'main': path = r"C:\Users\Administrator\Desktop\LiTS2017" savepath = r"C:\Users\Administrator\Desktop\2D-LiTS2017" filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename) 将代码中的 使用cv2模块的代码替换掉,给出完整代码,实现相同功能

最新推荐

recommend-type

玄武岩纤维行业研究报告 新材料技术 玄武岩纤维 性能应用 市场分析

玄武岩纤维以其优异的耐温性和化学稳定性,在建筑、消防、环保、航空航天等领域广泛应用。文件提供了玄武岩纤维的性能参数比较、特性分析、发展历程、制备工艺、应用领域,以及全球和中国市场的产量、需求量和市场规模数据。适用于新材料行业研究人员、企业决策者和市场分析师,旨在提供玄武岩纤维的技术特点、市场动态和发展趋势的参考。
recommend-type

基于 Vue 3、Vite、Ant Design Vue 4.0、TypeScript、Vben Vue Admin,最先进的技术栈,让初学者能够更快的入门并投入到团队开发中去

基于 Vue 3、Vite、Ant Design Vue 4.0、TypeScript、Vben Vue Admin,最先进的技术栈,让初学者能够更快的入门并投入到团队开发中去。包括模块如:组织机构、角色用户、菜单授权、数据权限、系统参数等。完整组件封装,数据驱动视图。为微小中大项目的开发,提供现成的开箱解决方案及丰富的示例。Vue端完全开源。无用户限制
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈

![【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈](https://community.cloudera.com/t5/image/serverpage/image-id/31614iEBC942A7C6D4A6A1/image-size/large?v=v2&px=999) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. Java内存模型
recommend-type

c 语言return用法

在C语言中,`return`关键字用于结束函数的执行并返回一个值给函数调用者(如果函数声明了返回类型)。它的基本语法如下: ```c return_type function_name(parameters) { // 函数体内的代码 if (条件) { return value; // 可选的,直接返回一个特定值 } else { // 可能的计算后返回 result = some_computation(); return result; } } ``` 当`return`被执行时,控制权会立即从当前函数转移