function varargout = mixexpPredict(model, X) %% Predict using mixture of experts model % If the response y is real-valued, we return % [mu, sigma2, post, muk, sigma2k] = mixexpPredict(model, X) % mu(i) = E[y | X(i,:)] % sigma2(i) = var[y | X(i,:)] % weights(i,k) = p(expert = k | X(i,:) % muk(i) = E[y | X(i,:), expert k] % sigma2k(i) = var[y | X(i,:), expert k] % % If the response y is categorical, we return % [yhat, prob] = mixexpPredict(model, X) % yhat(i) = argmax p(y|X(i,:)) % prob(i,c) = p(y=c|X(i,:)) % This file is from pmtk3.googlecode.com [N,D] = size(X); %X = standardize(X); %X = [ones(N,1) X]; if isfield(model, 'preproc') [X] = preprocessorApplyToTest(model.preproc, X); end K = model.nmix; if model.fixmix weights = repmat(model.mixweights, N, 1); else weights = softmaxPmtk(X*model.Wq); % weights(n,q) end if model.classifier % implemented by JoAnne Ting prob = zeros(N, size(model.Wy,2)); yhat_k = zeros(N, model.Nclasses, K); for k = 1:K yhat_k(:,:,k) = softmaxPmtk(X*model.Wy(:,:,k)); % Weighted vote prob = prob + yhat_k(:,:,k) .* repmat(weights(:,k), 1, size(model.Wy,2)); end yhat = maxidx(prob, [], 2); varargout{1} = yhat; varargout{2} = prob; else % mean of a mixture model is given by % E[x] = sum_k pik muk %mu = sum(weights .* (X*model.Wy), 2); % variance of a mixture model is given by % sum_k pi_k [Sigmak + muk*muk'] - E[x] E[x]' muk = zeros(N,K); vk = zeros(N,K); mu = zeros(N,1); v = zeros(N,1); for k=1:K muk(:,k) = X*model.Wy(:,k); mu = mu + weights(:,k) .* muk(:,k); vk(:,k) = model.sigma2(k); v = v + weights(:,k) .* (vk(:,k) + muk(:,k).^2); end v = v-mu.^2; varargout{1} = mu; varargout{2} = v; varargout{3} = weights; varargout{4} = muk; varargout{5} = vk; end end
时间: 2024-04-12 22:34:19 浏览: 142
这是一个用于预测混合专家模型的函数。该函数可以根据输入的模型和数据,返回预测结果。如果目标变量 y 是实值型的,函数会返回预测的均值、方差以及后验概率。如果目标变量 y 是分类型的,函数会返回预测的类别以及类别的概率。
函数首先对输入数据 X 进行预处理(如果有预处理步骤),然后根据模型参数计算混合权重 weights。如果模型是分类器,则根据权重和类别权重参数计算类别概率,并选取概率最大的类别作为预测结果。如果模型不是分类器,则根据权重和模型参数计算预测的均值和方差,并返回混合权重、均值和方差。
该函数是从 pmtk3.googlecode.com 中获取的。
相关问题
function varargout = main(varargin)
这是一个 MATLAB 函数的框架,其中包含了输入参数和输出参数。在 MATLAB 中,函数的输入参数和输出参数都可以是多个,因此使用 varargout 和 varargin 来表示。varargout 表示输出参数,可以是一个或多个变量,而 varargin 表示输入参数,也可以是一个或多个变量。在具体的实现中,varargin 和 varargout 可以通过 cell 类型进行传递。
function varargout = actionFig(varargin)
`function varargout = actionFig(varargin)` 是 MATLAB 环境下的一种函数定义方式。在这里,`varargout` 和 `varargin` 是两个特殊的变量,分别用于接收函数的输出和输入参数。这种函数通常被称为可变参数函数,它们能够处理任意数量的输入或输出参数。
- `varargin` 是一个数组,包含了函数接收到的所有输入参数。用户可以在调用函数时提供任意数量的参数,这些参数以一个单元格数组的形式传入函数内部。
- `varargout` 也是一个数组,用于返回任意数量的输出。在函数的主体中,你可以通过指定 `varargout{}` 中的元素来返回不同的输出。通常,这是通过在函数定义中使用 `nargout` 来控制返回值的数量,`nargout` 是一个内置变量,表示函数被调用时预期的输出参数数量。
下面是一个简单的例子,说明如何在 MATLAB 中定义和使用这样的函数:
```matlab
function varargout = exampleFunction(varargin)
% 假设我们根据输入参数的数量来返回不同的结果
n = length(varargin); % 输入参数的数量
if n == 0
varargout{1} = '没有提供输入参数';
elseif n == 1
varargout{1} = varargin{1} * 2; % 返回输入参数的两倍
else
varargout{1} = varargin{1} * 2; % 返回第一个输入参数的两倍
varargout{2} = varargin{2} * 3; % 返回第二个输入参数的三倍
end
end
```
在这个例子中,`exampleFunction` 根据提供的输入参数数量返回不同数量的结果。用户在调用此函数时可以根据需要提供任意数量的输入参数,并根据函数的逻辑得到不同数量的输出。
阅读全文