parser.add_argument("--n_cpu",
时间: 2024-01-29 15:09:49 浏览: 91
`parser.add_argument("--n_cpu", ...)`是用于给ArgumentParser添加一个名为"--n_cpu"的程序参数信息的方法。具体的参数信息可以根据需求进行设置,例如设置参数的类型、默认值、帮助信息等。
以下是一个示例:
```python
import argparse
# 创建ArgumentParser对象
parser = argparse.ArgumentParser(description='test')
# 添加程序参数信息
parser.add_argument("--n_cpu", type=int, default=4, help='Number of CPUs to use.')
# 解析命令行参数
args = parser.parse_args()
# 使用解析后的参数
print("Number of CPUs to use:", args.n_cpu)
```
在上述示例中,`--n_cpu`是一个整型参数,其默认值为4,帮助信息为"Number of CPUs to use."。通过`parser.parse_args()`方法解析命令行参数后,可以使用`args.n_cpu`来获取用户输入的参数值。
相关问题
if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--epochs", type=int, default=100, help="number of epochs") parser.add_argument("--batch_size", type=int, default=4, help="size of each image batch") parser.add_argument("--gradient_accumulations", type=int, default=2, help="number of gradient accums before step") parser.add_argument("--model_def", type=str, default="config/yolov3.cfg", help="path to model definition file") parser.add_argument("--data_config", type=str, default="config/coco.data", help="path to data config file") parser.add_argument("--pretrained_weights", type=str, help="if specified starts from checkpoint model") parser.add_argument("--n_cpu", type=int, default=0, help="number of cpu threads to use during batch generation") parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension") parser.add_argument("--checkpoint_interval", type=int, default=1, help="interval between saving model weights") parser.add_argument("--evaluation_interval", type=int, default=1, help="interval evaluations on validation set") parser.add_argument("--compute_map", default=False, help="if True computes mAP every tenth batch") parser.add_argument("--multiscale_training", default=True, help="allow for multi-scale training") opt = parser.parse_args() print(opt)
这段代码是一个 Python 脚本,用于训练 YOLOv3 目标检测模型。它使用 argparse 模块来解析命令行参数,并将这些参数存储在 opt 对象中。这些参数包括训练轮数、批量大小、梯度积累次数、模型定义文件路径、数据配置文件路径、预训练权重文件路径、CPU 线程数、图像大小、保存模型权重的间隔、在验证集上评估的间隔、是否计算 mAP、是否允许多尺度训练等。最后,它打印出 opt 对象的值。
# Basic options parser.add_argument("-style_image", help="Style target image", default='examples/inputs/seated-nude.jpg') parser.add_argument("-style_blend_weights", default=None) parser.add_argument("-content_image", help="Content target image", default='examples/inputs/tubingen.jpg') parser.add_argument("-image_size", help="Maximum height / width of generated image", type=int, default=450) parser.add_argument("-gpu", help="Zero-indexed ID of the GPU to use; for CPU mode set -gpu = c", default=0) # Optimization options parser.add_argument("-content_weight", type=float, default=5e0) parser.add_argument("-style_weight", type=float, default=1e2) parser.add_argument("-normalize_weights", action='store_true') parser.add_argument("-normalize_gradients", action='store_true') parser.add_argument("-tv_weight", type=float, default=1e-3) parser.add_argument("-num_iterations", type=int, default=1000) parser.add_argument("-init", choices=['random', 'image'], default='random') parser.add_argument("-init_image", default=None) parser.add_argument("-optimizer", choices=['lbfgs', 'adam'], default='lbfgs') parser.add_argument("-learning_rate", type=float, default=1e0) parser.add_argument("-lbfgs_num_correction", type=int, default=100) # Output options parser.add_argument("-print_iter", type=int, default=50) parser.add_argument("-save_iter", type=int, default=100) parser.add_argument("-output_image", default='out.png')这段代码是什么意思?
这段代码是一个命令行参数解析器(parser),用于解析用户在命令行中输入的参数。它定义了一系列可用的选项和默认值,用于控制图像样式迁移算法的行为。下面是每个参数的含义:
- `-style_image`: 指定样式目标图像的路径,默认为 'examples/inputs/seated-nude.jpg'。
- `-style_blend_weights`: 样式融合权重,默认为 None。
- `-content_image`: 指定内容目标图像的路径,默认为 'examples/inputs/tubingen.jpg'。
- `-image_size`: 生成图像的最大高度/宽度,默认为 450 像素。
- `-gpu`: 指定使用的 GPU 的索引,默认为 0。如果要使用 CPU 模式,则设置 `-gpu = c`。
优化选项:
- `-content_weight`: 内容损失的权重,默认为 5e0。
- `-style_weight`: 样式损失的权重,默认为 1e2。
- `-normalize_weights`: 是否对权重进行归一化。
- `-normalize_gradients`: 是否对梯度进行归一化。
- `-tv_weight`: 总变差正则化项的权重,默认为 1e-3。
- `-num_iterations`: 迭代次数,默认为 1000。
- `-init`: 初始化生成图像的方式,可选 'random'(随机初始化)或 'image'(使用指定的初始化图像)。
- `-init_image`: 用于初始化生成图像的图像路径,默认为 None。
- `-optimizer`: 优化器的选择,可选 'lbfgs' 或 'adam',默认为 'lbfgs'。
- `-learning_rate`: 学习率,默认为 1e0。
- `-lbfgs_num_correction`: L-BFGS 优化器的参数,用于控制历史信息的存储量,默认为 100。
输出选项:
- `-print_iter`: 每隔多少次迭代输出一次信息,默认为 50。
- `-save_iter`: 每隔多少次迭代保存一次生成的图像,默认为 100。
- `-output_image`: 生成图像的保存路径,默认为 'out.png'。
通过在命令行中使用这些参数,可以控制图像样式迁移算法的行为,并生成符合用户需求的图像。
阅读全文