帮我解析一下这段代码int keyExpansion(const uint8_t key, uint32_t keyLen, AesKey aesKey) { if (NULL == key || NULL == aesKey){ return -1; } if (keyLen != 16){ return -1; }

时间: 2024-04-20 18:23:17 浏览: 32
这段代码是一个用于对密钥进行扩展的函数。让我们逐行解析它: 1. `int keyExpansion(const uint8_t* key, uint32_t keyLen, AesKey aesKey)`: 这是函数的定义,它接受一个指向uint8_t类型的密钥数组,一个表示密钥长度的整数keyLen和一个AesKey类型的结构体aesKey作为参数,并返回一个整数。 2. `if (NULL == key || NULL == aesKey) { return -1; }`: 这是一个条件判断语句,检查传入的密钥指针和aesKey结构体是否为NULL。如果其中任何一个为NULL,则返回-1,表示函数执行失败。 3. `if (keyLen != 16) { return -1; }`: 这是另一个条件判断语句,检查传入的密钥长度是否等于16。如果不等于16,则返回-1,表示函数执行失败。 该函数的目的是对给定的密钥进行扩展,并将扩展后的结果存储在aesKey结构体中。根据代码的上下文,我们可以推断出该函数是用于AES加密算法的密钥扩展部分。但是,由于代码片段中没有给出完整的函数实现,我们无法提供更多关于函数内部逻辑的解析。
相关问题

AES128_ECB_encrypt函数

下面是一个AES128_ECB_encrypt函数的示例代码,用于对输入的明文进行加密: ```c #include <stdint.h> #define Nb 4 #define Nk 4 #define Nr 10 static void SubBytes(uint8_t *state); static void ShiftRows(uint8_t *state); static void MixColumns(uint8_t *state); static void AddRoundKey(uint8_t *state, uint8_t *round_key); static void KeyExpansion(uint8_t *key, uint8_t *round_key); static void Cipher(uint8_t *input, uint8_t *output, uint8_t *round_key); void AES128_ECB_encrypt(uint8_t *input, uint8_t *key, uint8_t *output) { uint8_t round_key[176]; KeyExpansion(key, round_key); Cipher(input, output, round_key); } static uint8_t sbox[256] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; static void SubBytes(uint8_t *state) { for (int i = 0; i < Nb * 4; i++) { state[i] = sbox[state[i]]; } } static void ShiftRows(uint8_t *state) { uint8_t tmp[Nb * 4]; for (int i = 0; i < Nb * 4; i++) { tmp[i] = state[i]; } for (int i = 0; i < Nb; i++) { for (int j = 0; j < 4; j++) { state[i * 4 + j] = tmp[(i + j) % Nb * 4 + j]; } } } static uint8_t gf_mul(uint8_t a, uint8_t b) { uint8_t p = 0; for (int i = 0; i < 8; i++) { if (b & 1) { p ^= a; } uint8_t hi_bit = a & 0x80; a <<= 1; if (hi_bit) { a ^= 0x1b; } b >>= 1; } return p; } static void MixColumns(uint8_t *state) { uint8_t tmp[Nb * 4]; for (int i = 0; i < Nb * 4; i++) { tmp[i] = state[i]; } for (int i = 0; i < Nb; i++) { state[4 * i] = gf_mul(0x02, tmp[4 * i]) ^ gf_mul(0x03, tmp[4 * i + 1]) ^ tmp[4 * i + 2] ^ tmp[4 * i + 3]; state[4 * i + 1] = tmp[4 * i] ^ gf_mul(0x02, tmp[4 * i + 1]) ^ gf_mul(0x03, tmp[4 * i + 2]) ^ tmp[4 * i + 3]; state[4 * i + 2] = tmp[4 * i] ^ tmp[4 * i + 1] ^ gf_mul(0x02, tmp[4 * i + 2]) ^ gf_mul(0x03, tmp[4 * i + 3]); state[4 * i + 3] = gf_mul(0x03, tmp[4 * i]) ^ tmp[4 * i + 1] ^ tmp[4 * i + 2] ^ gf_mul(0x02, tmp[4 * i + 3]); } } static void AddRoundKey(uint8_t *state, uint8_t *round_key) { for (int i = 0; i < Nb * 4; i++) { state[i] ^= round_key[i]; } } static void KeyExpansion(uint8_t *key, uint8_t *round_key) { uint32_t w[Nb * (Nr + 1)]; for (int i = 0; i < Nk; i++) { w[i] = (key[4 * i] << 24) | (key[4 * i + 1] << 16) | (key[4 * i + 2] << 8) | key[4 * i + 3]; } for (int i = Nk; i < Nb * (Nr + 1); i++) { uint32_t temp = w[i - 1]; if (i % Nk == 0) { temp = (sbox[temp & 0xff] << 24) | (sbox[(temp >> 8) & 0xff] << 16) | (sbox[(temp >> 16) & 0xff] << 8) | sbox[(temp >> 24) & 0xff]; temp ^= (uint32_t)(rcon[i / Nk] << 24); } else if (Nk > 6 && i % Nk == 4) { temp = (sbox[temp & 0xff] << 24) | (sbox[(temp >> 8) & 0xff] << 16) | (sbox[(temp >> 16) & 0xff] << 8) | sbox[(temp >> 24) & 0xff]; } w[i] = w[i - Nk] ^ temp; } for (int i = 0; i < Nb * (Nr + 1); i++) { round_key[4 * i] = (w[i] >> 24) & 0xff; round_key[4 * i + 1] = (w[i] >> 16) & 0xff; round_key[4 * i + 2] = (w[i] >> 8) & 0xff; round_key[4 * i + 3] = w[i] & 0xff; } } static void Cipher(uint8_t *input, uint8_t *output, uint8_t *round_key) { uint8_t state[Nb * 4]; for (int i = 0; i < Nb * 4; i++) { state[i] = input[i]; } AddRoundKey(state, round_key); for (int round = 1; round < Nr; round++) { SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state, round_key + round * Nb * 4); } SubBytes(state); ShiftRows(state); AddRoundKey(state, round_key + Nr * Nb * 4); for (int i = 0; i < Nb * 4; i++) { output[i] = state[i]; } } static uint8_t rcon[11] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c }; ``` 该函数包含了AES128加密算法的核心实现。在函数内部,通过调用SubBytes、ShiftRows、MixColumns和AddRoundKey等辅助函数,对输入的明文进行加密处理。需要注意的是,该函数中使用了一个名为KeyExpansion的函数,用于生成扩展密钥。在实际应用中,密钥的扩展过程需要提前完成,并将扩展密钥作为参数传递给加密函数。

写一个aes加密算法的代码

以下是一个简单的 AES 加密算法的代码示例: #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdint.h> #define Nb 4 #define Nk 4 #define Nr 10 typedef uint8_t state_t[4][4]; static const uint8_t sbox[256] = { // S-box }; static const uint8_t rsbox[256] = { // Inverse S-box }; static const uint8_t Rcon[11] = { // Round constants }; static void sub_bytes(state_t *state) { // SubBytes step } static void shift_rows(state_t *state) { // ShiftRows step } static void mix_columns(state_t *state) { // MixColumns step } static void add_round_key(uint8_t round, state_t *state, const uint8_t *key) { // AddRoundKey step } static void key_expansion(const uint8_t *key, uint8_t *w) { // KeyExpansion routine } void aes_encrypt(const uint8_t *in, uint8_t *out, const uint8_t *key) { state_t state; uint8_t w[4 * Nb * (Nr + 1)]; key_expansion(key, w); memcpy(state, in, 4 * Nb); add_round_key(0, &state, key); for (uint8_t round = 1; round < Nr; ++round) { sub_bytes(&state); shift_rows(&state); mix_columns(&state); add_round_key(round, &state, w + round * 4 * Nb); } sub_bytes(&state); shift_rows(&state); add_round_key(Nr, &state, w + Nr * 4 * Nb); memcpy(out, state, 4 * Nb); } int main(void) { uint8_t in[16] = { /* Input data */ }; uint8_t out[16]; uint8_t key[16] = { /* Key */ }; aes_encrypt(in, out, key); for (int i = 0; i < 16; ++i) { printf("%02x ", out[i]); } printf("\n"); return 0; }

相关推荐

最新推荐

recommend-type

AES原理及c语言实现

用Nk=4,6,8 代表密钥串的字数(1 字=32 比特) ,在本文编制的程序中由用户选定。用Nr 表示对一个数据分组加密的轮数(加密轮数与密钥长度的关系见表1) 。每一轮都需要一个和输入分组具有同样长度(128 比特) 的扩展密钥...
recommend-type

AES解密程序verilog

部分内容是verilog程序的源代码,包括密钥扩展模块(keyExpansion.v)的实现代码。该模块用于扩展输入密钥,生成用于AES解密算法的round key。 密钥扩展 密钥扩展是AES解密算法的重要步骤,用于将输入密钥扩展成多...
recommend-type

AES算法介绍,AES算法介绍,AES算法介绍

AES 加密算法 AES(Advanced Encryption Standard)是一种高级加密标准,用于保护电子数据的安全。AES 算法是一种对称密钥块密码,使用 128、192 和 256 位密钥,可以对 128 位(16 个字节)的数据块进行加密和解密...
recommend-type

AES加密解密详细演示AES加密解密过程

详细演示AES加密解密过程.AES是分组密钥,算法输入128位数据,密钥长度也是128位。用Nr表示对一个数据分组加密的轮数(加密轮数与密钥长度的关系如表1所列)。每一轮都需要一个与输入分组具有相同长度的扩展密钥...
recommend-type

2019年12月西安电子科技大学计算机安全导论期末题.doc

* 缓冲区溢出攻击:攻击者输入过长的字符串,使得缓冲区溢出,导致程序崩溃或执行恶意代码 * 缓冲区溢出类型:栈溢出、堆溢出、格式化字符串溢出等 * 防范措施:使用安全的编程语言、使用安全的函数、限制输入的长度...
recommend-type

计算机基础知识试题与解答

"计算机基础知识试题及答案-(1).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了计算机历史、操作系统、计算机分类、电子器件、计算机系统组成、软件类型、计算机语言、运算速度度量单位、数据存储单位、进制转换以及输入/输出设备等多个方面。 1. 世界上第一台电子数字计算机名为ENIAC(电子数字积分计算器),这是计算机发展史上的一个重要里程碑。 2. 操作系统的作用是控制和管理系统资源的使用,它负责管理计算机硬件和软件资源,提供用户界面,使用户能够高效地使用计算机。 3. 个人计算机(PC)属于微型计算机类别,适合个人使用,具有较高的性价比和灵活性。 4. 当前制造计算机普遍采用的电子器件是超大规模集成电路(VLSI),这使得计算机的处理能力和集成度大大提高。 5. 完整的计算机系统由硬件系统和软件系统两部分组成,硬件包括计算机硬件设备,软件则包括系统软件和应用软件。 6. 计算机软件不仅指计算机程序,还包括相关的文档、数据和程序设计语言。 7. 软件系统通常分为系统软件和应用软件,系统软件如操作系统,应用软件则是用户用于特定任务的软件。 8. 机器语言是计算机可以直接执行的语言,不需要编译,因为它直接对应于硬件指令集。 9. 微机的性能主要由CPU决定,CPU的性能指标包括时钟频率、架构、核心数量等。 10. 运算器是计算机中的一个重要组成部分,主要负责进行算术和逻辑运算。 11. MIPS(Millions of Instructions Per Second)是衡量计算机每秒执行指令数的单位,用于描述计算机的运算速度。 12. 计算机存储数据的最小单位是位(比特,bit),是二进制的基本单位。 13. 一个字节由8个二进制位组成,是计算机中表示基本信息的最小单位。 14. 1MB(兆字节)等于1,048,576字节,这是常见的内存和存储容量单位。 15. 八进制数的范围是0-7,因此317是一个可能的八进制数。 16. 与十进制36.875等值的二进制数是100100.111,其中整数部分36转换为二进制为100100,小数部分0.875转换为二进制为0.111。 17. 逻辑运算中,0+1应该等于1,但选项C错误地给出了0+1=0。 18. 磁盘是一种外存储设备,用于长期存储大量数据,既可读也可写。 这些题目旨在帮助学习者巩固和检验计算机基础知识的理解,涵盖的领域广泛,对于初学者或需要复习基础知识的人来说很有价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

设置ansible 开机自启

Ansible是一个强大的自动化运维工具,它可以用来配置和管理服务器。如果你想要在服务器启动时自动运行Ansible任务,通常会涉及到配置服务或守护进程。以下是使用Ansible设置开机自启的基本步骤: 1. **在主机上安装必要的软件**: 首先确保目标服务器上已经安装了Ansible和SSH(因为Ansible通常是通过SSH执行操作的)。如果需要,可以通过包管理器如apt、yum或zypper安装它们。 2. **编写Ansible playbook**: 创建一个YAML格式的playbook,其中包含`service`模块来管理服务。例如,你可以创建一个名为`setu
recommend-type

计算机基础知识试题与解析

"计算机基础知识试题及答案(二).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了操作系统、硬件、数据表示、存储器、程序、病毒、计算机分类、语言等多个方面的知识。 1. 计算机系统由硬件系统和软件系统两部分组成,选项C正确。硬件包括计算机及其外部设备,而软件包括系统软件和应用软件。 2. 十六进制1000转换为十进制是4096,因此选项A正确。十六进制的1000相当于1*16^3 = 4096。 3. ENTER键是回车换行键,用于确认输入或换行,选项B正确。 4. DRAM(Dynamic Random Access Memory)是动态随机存取存储器,选项B正确,它需要周期性刷新来保持数据。 5. Bit是二进制位的简称,是计算机中数据的最小单位,选项A正确。 6. 汉字国标码GB2312-80规定每个汉字用两个字节表示,选项B正确。 7. 微机系统的开机顺序通常是先打开外部设备(如显示器、打印机等),再开启主机,选项D正确。 8. 使用高级语言编写的程序称为源程序,需要经过编译或解释才能执行,选项A正确。 9. 微机病毒是指人为设计的、具有破坏性的小程序,通常通过网络传播,选项D正确。 10. 运算器、控制器及内存的总称是CPU(Central Processing Unit),选项A正确。 11. U盘作为外存储器,断电后存储的信息不会丢失,选项A正确。 12. 财务管理软件属于应用软件,是为特定应用而开发的,选项D正确。 13. 计算机网络的最大好处是实现资源共享,选项C正确。 14. 个人计算机属于微机,选项D正确。 15. 微机唯一能直接识别和处理的语言是机器语言,它是计算机硬件可以直接执行的指令集,选项D正确。 16. 断电会丢失原存信息的存储器是半导体RAM(Random Access Memory),选项A正确。 17. 硬盘连同驱动器是一种外存储器,用于长期存储大量数据,选项B正确。 18. 在内存中,每个基本单位的唯一序号称为地址,选项B正确。 以上是对文档部分内容的详细解释,这些知识对于理解和操作计算机系统至关重要。