a*算法matlab代码带注释

时间: 2023-07-17 22:02:56 浏览: 95
### 回答1: A*算法是一种常用于寻找最短路径的算法,它在搜索过程中综合考虑了路径的已经走过的代价和预估的剩余代价。 以下是一个使用Matlab实现A*算法的代码,带有注释说明每个步骤的作用: ```matlab function path = Astar(start, goal, map) % 输入参数:起点、终点、地图 % 输出结果:最短路径的点序列 % 初始化open列表,表示可继续搜索的节点 open = []; % 初始化close列表,表示已经搜索过的节点 closed = []; % 将起点放入open列表 open = [open; start]; % 初始化起点的已经走过的代价为0 g_score(start) = 0; % 初始化起点到终点的预估代价 h_score(start) = heuristic(start, goal); % 初始化起点的总代价 f_score(start) = g_score(start) + h_score(start); while ~isempty(open) % 选择open列表中总代价最小的节点 [~, curr] = min(f_score); % 判断当前节点是否为终点,如果是则返回找到的路径 if curr == goal path = reconstruct_path(curr); return; end % 从open列表中移除当前节点 open(curr) = []; % 将当前节点加入close列表 closed = [closed; curr]; % 遍历当前节点的所有邻居 neighbors = get_neighbors(curr); for i = 1:length(neighbors) neighbor = neighbors(i); % 如果邻居节点已经在close列表中,则跳过 if ismember(neighbor, closed) continue; end % 计算当前节点到邻居节点的已经走过的代价 g = g_score(curr) + distance(curr, neighbor); % 如果邻居节点不在open列表中,则将其加入open列表 if ~ismember(neighbor, open) open = [open; neighbor]; elseif g >= g_score(neighbor) % 如果当前已经找到的路径比邻居节点的路径代价更高,则跳过该邻居节点 continue; end % 更新邻居节点的已经走过的代价、预估代价和总代价 g_score(neighbor) = g; h_score(neighbor) = heuristic(neighbor, goal); f_score(neighbor) = g_score(neighbor) + h_score(neighbor); % 记录邻居节点的父节点,用于最后构建路径 parent(neighbor) = curr; end end % 如果搜索完整个地图都没有找到路径,则返回空路径 path = []; end function path = reconstruct_path(curr) % 根据记录的父节点,构建最短路径的点序列 path = [curr]; while parent(curr) ~= 0 curr = parent(curr); path = [curr; path]; end end function dist = distance(curr, neighbor) % 计算两个节点之间的距离 dist = sqrt((curr(1) - neighbor(1))^2 + (curr(2) - neighbor(2))^2); end function neighbors = get_neighbors(curr) % 获取当前节点的邻居节点 % 这里可以根据需要定制邻居节点的获取方式,比如上下左右四个方向 % 或者八个方向 neighbors = []; % TODO: 根据具体需求修改这里的代码 end function heur = heuristic(curr, goal) % 估计当前节点到终点的距离,这个函数要根据实际问题进行具体实现 % 一种简单的估计方法是使用欧几里得距离 heur = sqrt((curr(1) - goal(1))^2 + (curr(2) - goal(2))^2); end ``` 以上就是使用Matlab实现A*算法的代码,带有注释说明每个步骤的作用。这段代码可以通过传入起点、终点和地图来寻找最短路径的点序列。其中还包括一些关键的辅助函数,比如估计函数、距离计算函数和邻居节点获取函数,可以根据具体问题进行定制。 ### 回答2: A*算法是一种常用的路径搜索算法,用于在图中找出两点之间的最短路径。下面是一个使用Matlab编写的A*算法代码,并带有注释解释每个步骤的用途。 ```matlab function path = Astar(start, goal, obstacles) % 初始化open列表,用于存储待检查的节点 open = []; % 初始化closed列表,用于存储已检查过的节点 closed = []; % 将起始节点加入open列表 open = [open start]; % 初始化每个节点的g值为无穷大 gScore = Inf(size(obstacles)); % 设置起始节点的g值为0 gScore(start(1), start(2)) = 0; % 初始化每个节点的f值为无穷大 fScore = Inf(size(obstacles)); % 设置起始节点的f值为起始节点到目标节点的估计值 fScore(start(1), start(2)) = heuristic(start, goal); while ~isempty(open) % 选择f值最小的节点作为当前节点 [~, current] = min(fScore(:)); [currentY, currentX] = ind2sub(size(obstacles), current); % 若当前节点为目标节点,则路径找到,跳出循环 if current == goal path = reconstructPath(cameFrom, current); return; end % 将当前节点从open列表中移除,加入closed列表 open(ismember(open, current)) = []; closed = [closed current]; % 获取当前节点的邻居节点 neighbors = getNeighbors(current, obstacles); for i = 1:numel(neighbors) neighbor = neighbors(i); % 若邻居节点已在closed列表中,则忽略 if ismember(neighbor, closed) continue; end % 计算从起始节点到当前节点再到邻居节点的总消耗 tentative_gScore = gScore(currentY, currentX) + distance(current, neighbor); % 若当前路径没有更优,则忽略 if tentative_gScore >= gScore(neighbor(1), neighbor(2)) continue; end % 更新g值和f值 gScore(neighbor(1), neighbor(2)) = tentative_gScore; fScore(neighbor(1), neighbor(2)) = gScore(neighbor(1), neighbor(2)) + heuristic(neighbor, goal); % 记录邻居节点的来自节点 cameFrom(neighbor(1), neighbor(2)) = current; % 若邻居节点不在open列表中,则添加 if ~ismember(neighbor, open) open = [open neighbor]; end end end % 若open列表为空,表示找不到路径 error("No path found"); end function dist = heuristic(point1, point2) % 估计两个点之间的距离,这里可以使用曼哈顿距离或欧几里得距离等 dist = abs(point2(1) - point1(1)) + abs(point2(2) - point1(2)); end function neighbors = getNeighbors(point, obstacles) % 获取点的邻居节点,这里可以定义四向或八向邻接等 [rows, cols] = size(obstacles); [pointY, pointX] = ind2sub(size(obstacles), point); neighbors = []; % 上 if pointY > 1 && obstacles(pointY-1, pointX) == 0 neighbors = [neighbors sub2ind([rows, cols], pointY-1, pointX)]; end % 下 if pointY < rows && obstacles(pointY+1, pointX) == 0 neighbors = [neighbors sub2ind([rows, cols], pointY+1, pointX)]; end % 左 if pointX > 1 && obstacles(pointY, pointX-1) == 0 neighbors = [neighbors sub2ind([rows, cols], pointY, pointX-1)]; end % 右 if pointX < cols && obstacles(pointY, pointX+1) == 0 neighbors = [neighbors sub2ind([rows, cols], pointY, pointX+1)]; end end function path = reconstructPath(cameFrom, current) % 通过节点的来自记录重构最短路径 path = [current]; while cameFrom(current(1), current(2)) ~= 0 current = cameFrom(current(1), current(2)); path = [current path]; end end function dist = distance(point1, point2) % 计算两点之间的真实距离,这里可以使用欧几里得距离等 dist = norm(point1 - point2); end ``` 以上是一个使用Matlab编写的带有注释的A*算法代码。该代码首先初始化open列表和closed列表,然后通过迭代和更新的方式搜索最短路径,最终返回找到的路径。在代码中使用了启发式函数对每个节点进行估值,通过计算g值和f值来评估路径的代价,并通过邻居节点的判断和记录来实现路径搜索。最后给出了一些辅助函数,用于计算距离、障碍物判断和路径重构等。

相关推荐

最新推荐

recommend-type

k均值聚类算法MATLAB程序及注释

k均值聚类算法MATLAB程序及注释 k均值聚类算法是一种常用的聚类算法,用于将相似的数据对象归类到同一个簇中。该算法的MATLAB程序提供了一个完整的实现,包括详细的注释,以便读者更好地理解算法的实现过程。 首先...
recommend-type

基于 YOLOv5(假设为 YOLOv11)的火灾火焰烟雾检测系统(包含详细的完整的程序和数据)

本文详细介绍了一个利用深度学习模型YOLOv5构建的火灾火焰烟雾检测系统的设计和实现方法,系统能够实时识别图像中的火灾隐患并通过PyQt5实现友好的GUI交互。内容涵盖环境配置、YOLOv5模型准备及其在ONNX中的运用、以及检测逻辑和性能评估等重要环节,提供了可用于智能化监控、公共安全保障的应用方案。 适合人群:有一定深度学习基础的研发人员、安全领域从业者和计算机视觉爱好者。 使用场景及目标:该系统适合作为企业级或公共场所内的智能消防安防设备的一部分,在发生火灾初期及时提醒管理人员采取措施。 该文章适用于想要深入了解YOLOv5在具体场景下如何部署的研究人员和技术团队成员查阅。同时也可作为学习YOLOv5在实时对象检测领域的教学案例。
recommend-type

zlib-1.2.12压缩包解析与技术要点

资源摘要信息: "zlib-1.2.12.tar.gz是一个开源的压缩库文件,它包含了一系列用于数据压缩的函数和方法。zlib库是一个广泛使用的数据压缩库,广泛应用于各种软件和系统中,为数据的存储和传输提供了极大的便利。" zlib是一个广泛使用的数据压缩库,由Jean-loup Gailly和Mark Adler开发,并首次发布于1995年。zlib的设计目的是为各种应用程序提供一个通用的压缩和解压功能,它为数据压缩提供了一个简单的、高效的应用程序接口(API),该接口依赖于广泛使用的DEFLATE压缩算法。zlib库实现了RFC 1950定义的zlib和RFC 1951定义的DEFLATE标准,通过这两个标准,zlib能够在不牺牲太多计算资源的前提下,有效减小数据的大小。 zlib库的设计基于一个非常重要的概念,即流压缩。流压缩允许数据在压缩和解压时以连续的数据块进行处理,而不是一次性处理整个数据集。这种设计非常适合用于大型文件或网络数据流的压缩和解压,它可以在不占用太多内存的情况下,逐步处理数据,从而提高了处理效率。 在描述中提到的“zlib-1.2.12.tar.gz”是一个压缩格式的源代码包,其中包含了zlib库的特定版本1.2.12的完整源代码。"tar.gz"格式是一个常见的Unix和Linux系统的归档格式,它将文件和目录打包成一个单独的文件(tar格式),随后对该文件进行压缩(gz格式),以减小存储空间和传输时间。 标签“zlib”直接指明了文件的类型和内容,它是对库功能的简明扼要的描述,表明这个压缩包包含了与zlib相关的所有源代码和构建脚本。在Unix和Linux环境下,开发者可以通过解压这个压缩包来获取zlib的源代码,并根据需要在本地系统上编译和安装zlib库。 从文件名称列表中我们可以得知,压缩包解压后的目录名称是“zlib-1.2.12”,这通常表示压缩包中的内容是一套完整的、特定版本的软件或库文件。开发者可以通过在这个目录中找到的源代码来了解zlib库的架构、实现细节和API使用方法。 zlib库的主要应用场景包括但不限于:网络数据传输压缩、大型文件存储压缩、图像和声音数据压缩处理等。它被广泛集成到各种编程语言和软件框架中,如Python、Java、C#以及浏览器和服务器软件中。此外,zlib还被用于创建更为复杂的压缩工具如Gzip和PNG图片格式中。 在技术细节方面,zlib库的源代码是用C语言编写的,它提供了跨平台的兼容性,几乎可以在所有的主流操作系统上编译运行,包括Windows、Linux、macOS、BSD、Solaris等。除了C语言接口,zlib库还支持多种语言的绑定,使得非C语言开发者也能够方便地使用zlib的功能。 zlib库的API设计简洁,主要包含几个核心函数,如`deflate`用于压缩数据,`inflate`用于解压数据,以及与之相关的函数和结构体。开发者通常只需要调用这些API来实现数据压缩和解压功能,而不需要深入了解背后的复杂算法和实现细节。 总的来说,zlib库是一个重要的基础设施级别的组件,对于任何需要进行数据压缩和解压的系统或应用程序来说,它都是一个不可忽视的选择。通过本资源摘要信息,我们对zlib库的概念、版本、功能、应用场景以及技术细节有了全面的了解,这对于开发人员和系统管理员在进行项目开发和系统管理时能够更加有效地利用zlib库提供了帮助。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【Tidy库绘图功能全解析】:打造数据可视化的利器

![【Tidy库绘图功能全解析】:打造数据可视化的利器](https://deliveringdataanalytics.com/wp-content/uploads/2022/11/Data-to-ink-Thumbnail-1024x576.jpg) # 1. Tidy库概述 ## 1.1 Tidy库的起源和设计理念 Tidy库起源于R语言的生态系统,由Hadley Wickham在2014年开发,旨在提供一套标准化的数据操作和图形绘制方法。Tidy库的设计理念基于"tidy data"的概念,即数据应当以一种一致的格式存储,使得分析工作更加直观和高效。这种设计理念极大地简化了数据处理
recommend-type

将字典转换为方形矩阵

字典转换为方形矩阵意味着将字典中键值对的形式整理成一个二维数组,其中行和列都是有序的。在这个例子中,字典的键似乎代表矩阵的行索引和列索引,而值可能是数值或者其他信息。由于字典中的某些项有特殊的标记如`inf`,我们需要先过滤掉这些不需要的值。 假设我们的字典格式如下: ```python data = { ('A1', 'B1'): 1, ('A1', 'B2'): 2, ('A2', 'B1'): 3, ('A2', 'B2'): 4, ('A2', 'B3'): inf, ('A3', 'B1'): inf, } ``` 我们可以编写一个函
recommend-type

微信小程序滑动选项卡源码模版发布

资源摘要信息: "微信小程序源码模版_滑动选项卡" 是一个面向微信小程序开发者的资源包,它提供了一个实现滑动选项卡功能的基础模板。该模板使用微信小程序的官方开发框架和编程语言,旨在帮助开发者快速构建具有动态切换内容区域功能的小程序页面。 微信小程序是腾讯公司推出的一款无需下载安装即可使用的应用,它实现了“触手可及”的应用体验,用户扫一扫或搜一下即可打开应用。小程序也体现了“用完即走”的理念,用户不用关心是否安装太多应用的问题。应用将无处不在,随时可用,但又无需安装卸载。 滑动选项卡是一种常见的用户界面元素,它允许用户通过水平滑动来在不同的内容面板之间切换。在移动应用和网页设计中,滑动选项卡被广泛应用,因为它可以有效地利用屏幕空间,同时提供流畅的用户体验。在微信小程序中实现滑动选项卡,可以帮助开发者打造更加丰富和交互性强的页面布局。 此源码模板主要包含以下几个核心知识点: 1. 微信小程序框架理解:微信小程序使用特定的框架,它包括wxml(类似HTML的标记语言)、wxss(类似CSS的样式表)、JavaScript以及小程序的API。掌握这些基础知识是开发微信小程序的前提。 2. 页面结构设计:在模板中,开发者可以学习如何设计一个具有多个选项卡的页面结构。这通常涉及设置一个外层的容器来容纳所有的标签项和对应的内容面板。 3. CSS布局技巧:为了实现选项卡的滑动效果,需要使用CSS进行布局。特别是利用Flexbox或Grid布局模型来实现响应式和灵活的界面。 4. JavaScript事件处理:微信小程序中的滑动选项卡需要处理用户的滑动事件,这通常涉及到JavaScript的事件监听和动态更新页面的逻辑。 5. WXML和WXSS应用:了解如何在WXML中构建页面的结构,并通过WXSS设置样式来美化页面,确保选项卡的外观与功能都能满足设计要求。 6. 小程序组件使用:微信小程序提供了丰富的内置组件,其中可能包括用于滑动的View容器组件和标签栏组件。开发者需要熟悉这些组件的使用方法和属性设置。 7. 性能优化:在实现滑动选项卡时,开发者应当注意性能问题,比如确保滑动流畅性,避免因为加载大量内容导致的卡顿。 8. 用户体验设计:一个良好的滑动选项卡需要考虑用户体验,比如标签的易用性、内容的清晰度和切换的动画效果等。 通过使用这个模板,开发者可以避免从零开始编写代码,从而节省时间,更快地将具有吸引力的滑动选项卡功能集成到他们的小程序中。这个模板适用于需要展示多内容区块但又希望保持页面简洁的场景,例如产品详情展示、新闻资讯列表、分类内容浏览等。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Tidy库与Pandas终极对比】:数据预处理的高效选择?专家深度解读!

![【Tidy库与Pandas终极对比】:数据预处理的高效选择?专家深度解读!](https://img-blog.csdnimg.cn/img_convert/3062764297b70f18d33d5bf9450ef2b7.png) # 1. 数据预处理的重要性 ## 数据预处理的概念 数据预处理是数据分析中的关键步骤,它涉及数据清洗、转换、归一化等操作,以确保分析的准确性和效率。没有经过良好预处理的数据可能导致分析结果出现偏差,影响决策的有效性。 ## 数据预处理的重要性 在当今数据驱动的业务环境中,数据的质量直接决定了分析结果的价值。高质量的数据可以提高模型的准确性,减少计算资
recommend-type

driver.add_experimental_option("detach", True)

`driver.add_experimental_option("detach", True)` 是在Selenium WebDriver(一个用于自动化浏览器测试的库)中设置的一个实验性选项。当这个选项被设置为True时,它会启用一个叫做“无头模式”的功能,允许你在后台运行浏览器,而不是以交互式窗口的形式显示。 具体来说,这通常用于以下场景: 1. **节省资源**:在不需要查看UI的情况下,可以避免打开整个图形界面,提高性能并减少资源消耗。 2. **服务器集成**:无头模式使得WebDriver更适合作为服务端测试框架的一部分,比如与CI/CD工具集成。 3. **隐私保护**: