a*算法matlab代码带注释
时间: 2023-07-17 22:02:56 浏览: 95
### 回答1:
A*算法是一种常用于寻找最短路径的算法,它在搜索过程中综合考虑了路径的已经走过的代价和预估的剩余代价。
以下是一个使用Matlab实现A*算法的代码,带有注释说明每个步骤的作用:
```matlab
function path = Astar(start, goal, map)
% 输入参数:起点、终点、地图
% 输出结果:最短路径的点序列
% 初始化open列表,表示可继续搜索的节点
open = [];
% 初始化close列表,表示已经搜索过的节点
closed = [];
% 将起点放入open列表
open = [open; start];
% 初始化起点的已经走过的代价为0
g_score(start) = 0;
% 初始化起点到终点的预估代价
h_score(start) = heuristic(start, goal);
% 初始化起点的总代价
f_score(start) = g_score(start) + h_score(start);
while ~isempty(open)
% 选择open列表中总代价最小的节点
[~, curr] = min(f_score);
% 判断当前节点是否为终点,如果是则返回找到的路径
if curr == goal
path = reconstruct_path(curr);
return;
end
% 从open列表中移除当前节点
open(curr) = [];
% 将当前节点加入close列表
closed = [closed; curr];
% 遍历当前节点的所有邻居
neighbors = get_neighbors(curr);
for i = 1:length(neighbors)
neighbor = neighbors(i);
% 如果邻居节点已经在close列表中,则跳过
if ismember(neighbor, closed)
continue;
end
% 计算当前节点到邻居节点的已经走过的代价
g = g_score(curr) + distance(curr, neighbor);
% 如果邻居节点不在open列表中,则将其加入open列表
if ~ismember(neighbor, open)
open = [open; neighbor];
elseif g >= g_score(neighbor)
% 如果当前已经找到的路径比邻居节点的路径代价更高,则跳过该邻居节点
continue;
end
% 更新邻居节点的已经走过的代价、预估代价和总代价
g_score(neighbor) = g;
h_score(neighbor) = heuristic(neighbor, goal);
f_score(neighbor) = g_score(neighbor) + h_score(neighbor);
% 记录邻居节点的父节点,用于最后构建路径
parent(neighbor) = curr;
end
end
% 如果搜索完整个地图都没有找到路径,则返回空路径
path = [];
end
function path = reconstruct_path(curr)
% 根据记录的父节点,构建最短路径的点序列
path = [curr];
while parent(curr) ~= 0
curr = parent(curr);
path = [curr; path];
end
end
function dist = distance(curr, neighbor)
% 计算两个节点之间的距离
dist = sqrt((curr(1) - neighbor(1))^2 + (curr(2) - neighbor(2))^2);
end
function neighbors = get_neighbors(curr)
% 获取当前节点的邻居节点
% 这里可以根据需要定制邻居节点的获取方式,比如上下左右四个方向
% 或者八个方向
neighbors = [];
% TODO: 根据具体需求修改这里的代码
end
function heur = heuristic(curr, goal)
% 估计当前节点到终点的距离,这个函数要根据实际问题进行具体实现
% 一种简单的估计方法是使用欧几里得距离
heur = sqrt((curr(1) - goal(1))^2 + (curr(2) - goal(2))^2);
end
```
以上就是使用Matlab实现A*算法的代码,带有注释说明每个步骤的作用。这段代码可以通过传入起点、终点和地图来寻找最短路径的点序列。其中还包括一些关键的辅助函数,比如估计函数、距离计算函数和邻居节点获取函数,可以根据具体问题进行定制。
### 回答2:
A*算法是一种常用的路径搜索算法,用于在图中找出两点之间的最短路径。下面是一个使用Matlab编写的A*算法代码,并带有注释解释每个步骤的用途。
```matlab
function path = Astar(start, goal, obstacles)
% 初始化open列表,用于存储待检查的节点
open = [];
% 初始化closed列表,用于存储已检查过的节点
closed = [];
% 将起始节点加入open列表
open = [open start];
% 初始化每个节点的g值为无穷大
gScore = Inf(size(obstacles));
% 设置起始节点的g值为0
gScore(start(1), start(2)) = 0;
% 初始化每个节点的f值为无穷大
fScore = Inf(size(obstacles));
% 设置起始节点的f值为起始节点到目标节点的估计值
fScore(start(1), start(2)) = heuristic(start, goal);
while ~isempty(open)
% 选择f值最小的节点作为当前节点
[~, current] = min(fScore(:));
[currentY, currentX] = ind2sub(size(obstacles), current);
% 若当前节点为目标节点,则路径找到,跳出循环
if current == goal
path = reconstructPath(cameFrom, current);
return;
end
% 将当前节点从open列表中移除,加入closed列表
open(ismember(open, current)) = [];
closed = [closed current];
% 获取当前节点的邻居节点
neighbors = getNeighbors(current, obstacles);
for i = 1:numel(neighbors)
neighbor = neighbors(i);
% 若邻居节点已在closed列表中,则忽略
if ismember(neighbor, closed)
continue;
end
% 计算从起始节点到当前节点再到邻居节点的总消耗
tentative_gScore = gScore(currentY, currentX) + distance(current, neighbor);
% 若当前路径没有更优,则忽略
if tentative_gScore >= gScore(neighbor(1), neighbor(2))
continue;
end
% 更新g值和f值
gScore(neighbor(1), neighbor(2)) = tentative_gScore;
fScore(neighbor(1), neighbor(2)) = gScore(neighbor(1), neighbor(2)) + heuristic(neighbor, goal);
% 记录邻居节点的来自节点
cameFrom(neighbor(1), neighbor(2)) = current;
% 若邻居节点不在open列表中,则添加
if ~ismember(neighbor, open)
open = [open neighbor];
end
end
end
% 若open列表为空,表示找不到路径
error("No path found");
end
function dist = heuristic(point1, point2)
% 估计两个点之间的距离,这里可以使用曼哈顿距离或欧几里得距离等
dist = abs(point2(1) - point1(1)) + abs(point2(2) - point1(2));
end
function neighbors = getNeighbors(point, obstacles)
% 获取点的邻居节点,这里可以定义四向或八向邻接等
[rows, cols] = size(obstacles);
[pointY, pointX] = ind2sub(size(obstacles), point);
neighbors = [];
% 上
if pointY > 1 && obstacles(pointY-1, pointX) == 0
neighbors = [neighbors sub2ind([rows, cols], pointY-1, pointX)];
end
% 下
if pointY < rows && obstacles(pointY+1, pointX) == 0
neighbors = [neighbors sub2ind([rows, cols], pointY+1, pointX)];
end
% 左
if pointX > 1 && obstacles(pointY, pointX-1) == 0
neighbors = [neighbors sub2ind([rows, cols], pointY, pointX-1)];
end
% 右
if pointX < cols && obstacles(pointY, pointX+1) == 0
neighbors = [neighbors sub2ind([rows, cols], pointY, pointX+1)];
end
end
function path = reconstructPath(cameFrom, current)
% 通过节点的来自记录重构最短路径
path = [current];
while cameFrom(current(1), current(2)) ~= 0
current = cameFrom(current(1), current(2));
path = [current path];
end
end
function dist = distance(point1, point2)
% 计算两点之间的真实距离,这里可以使用欧几里得距离等
dist = norm(point1 - point2);
end
```
以上是一个使用Matlab编写的带有注释的A*算法代码。该代码首先初始化open列表和closed列表,然后通过迭代和更新的方式搜索最短路径,最终返回找到的路径。在代码中使用了启发式函数对每个节点进行估值,通过计算g值和f值来评估路径的代价,并通过邻居节点的判断和记录来实现路径搜索。最后给出了一些辅助函数,用于计算距离、障碍物判断和路径重构等。