matlab非线性最小二乘法拟合求参数
时间: 2023-09-01 22:05:25 浏览: 229
MATLAB求解非线性最小二乘法拟合问题 源程序代码_拟合_matlab_最小二乘法_源码
非线性最小二乘法是一种利用最小二乘法进行参数估计的方法,适用于非线性模型的拟合问题。在MATLAB中,可以使用lsqcurvefit函数来实现非线性最小二乘法拟合求参数。
首先,需要定义一个包含待拟合非线性模型的函数。这个函数接受待求参数和自变量作为输入,返回模型预测值。例如,对于一个非线性模型 y = a * exp(b * x),可以定义一个函数如下:
```matlab
function y_pred = myfun(params, x)
a = params(1);
b = params(2);
y_pred = a * exp(b * x);
end
```
然后,需要提供一组观测数据,包括自变量x和对应的因变量y。接下来,使用lsqcurvefit函数进行拟合求解:
```matlab
% 假设已有的观测数据存储在x和y中
% 初始参数猜测值
params0 = [1, 0.1];
% 进行最小二乘法拟合求解
params_fit = lsqcurvefit(@myfun, params0, x, y);
```
lsqcurvefit函数会根据观测数据,初始参数猜测值,以及定义的函数,通过最小二乘法得到拟合的参数值params_fit。在拟合结果中,params_fit(1)对应a,params_fit(2)对应b。
最后,可以使用得到的参数值,计算模型的拟合值,并进行进一步的分析和应用。
通过MATLAB中的lsqcurvefit函数,可以方便地进行非线性最小二乘法拟合求参数的操作。
阅读全文