Buddy代码Linux

时间: 2024-07-17 17:00:22 浏览: 92
Buddy代码(Buddy allocator)是Linux内核中的一种内存分配算法,也称为 buddy system 或 buddy allocator system。它设计用于高效管理虚拟内存空间,特别是大型连续内存区域。Buddy系统主要应用于内存分页和内存块分配,其名称来源于"buddies"这个词,表示两个相邻的内存块就像是朋友一样可以共享。 在Buddy分配器中,内存被划分为一系列大小相等的“伙伴”(buddies),每个伙伴都有一个对应的位图(bitmap),用来跟踪内存状态。当需要分配内存时,Buddy代码会从大到小查找可用的伙伴,通过合并两个相邻的空伙伴(如果它们的大小是可对齐的),形成一个更大但更接近所需大小的新伙伴。这样做的好处是减少了碎片,并且分配过程非常快速。
相关问题

写一份关于buddy system 的C语言代码

以下是一个简单的Buddy System的C语言代码实现,用于分配和释放内存块: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> #define MAX_LEVEL 10 // 最大层数 #define MIN_SIZE 8 // 最小内存块大小 // 内存块结构体 typedef struct buddy_block { int level; // 当前层数 int is_free; // 是否空闲 struct buddy_block *next; // 下一个内存块 } buddy_block; // 内存池结构体 typedef struct buddy_pool { int size; // 内存池大小 int max_level; // 最大层数 buddy_block *blocks; // 内存块数组 } buddy_pool; // 初始化内存池 void init_buddy_pool(buddy_pool *pool, int size) { int i, block_size; pool->size = size; pool->max_level = log2(size) - log2(MIN_SIZE) + 1; pool->blocks = (buddy_block *) malloc(sizeof(buddy_block) * size); for (i = 0; i < size; i++) { pool->blocks[i].level = -1; pool->blocks[i].is_free = 1; pool->blocks[i].next = NULL; } // 初始化每个层级的内存块 for (i = 0; i < pool->max_level; i++) { block_size = pow(2, i + log2(MIN_SIZE)); pool->blocks[size / block_size].level = i; pool->blocks[size / block_size].is_free = 1; pool->blocks[size / block_size].next = NULL; } } // 分配内存块 void *buddy_alloc(buddy_pool *pool, int size) { int i, level = ceil(log2(size)) - log2(MIN_SIZE); if (level >= pool->max_level) { return NULL; } // 在当前及以上层级查找空闲块 for (i = level; i <= pool->max_level; i++) { if (pool->blocks[pool->size / pow(2, i)].is_free == 1) { break; } } // 没有找到空闲块 if (i > pool->max_level) { return NULL; } else { // 分裂块 while (i > level) { buddy_block *block = &pool->blocks[pool->size / pow(2, i)]; block->is_free = 0; // 将块分裂为左右两块 block->next = &pool->blocks[pool->size / pow(2, i - 1)]; i--; } buddy_block *block = &pool->blocks[pool->size / pow(2, level)]; block->is_free = 0; return (void *) block; } } // 释放内存块 void buddy_free(buddy_pool *pool, void *ptr) { buddy_block *block = (buddy_block *) ptr; block->is_free = 1; // 合并块 while (block->level < pool->max_level) { buddy_block *buddy = block->next; if (buddy->is_free == 0 || buddy->level != block->level) { break; } // 合并块 block->next = buddy->next; block = &pool->blocks[pool->size / pow(2, block->level + 1)]; block->level = buddy->level + 1; } } // 打印内存池状态 void print_buddy_pool(buddy_pool *pool) { int i, level = -1; for (i = 0; i < pool->size; i++) { if (pool->blocks[i].level != level) { level = pool->blocks[i].level; printf("\nLevel %d:\n", level); } printf("%d ", pool->blocks[i].is_free); } printf("\n"); } int main() { buddy_pool pool; init_buddy_pool(&pool, 128); void *p1 = buddy_alloc(&pool, 16); void *p2 = buddy_alloc(&pool, 64); void *p3 = buddy_alloc(&pool, 32); print_buddy_pool(&pool); buddy_free(&pool, p2); buddy_free(&pool, p3); print_buddy_pool(&pool); return 0; } ``` 在上面的代码中,我们使用buddy_block结构体表示内存块,其中level表示当前块所在的层数,is_free表示该块是否空闲,next表示该块的下一个块。buddy_pool结构体表示内存池,其中size表示内存池大小,max_level表示最大层数,blocks表示内存块数组。 在初始化内存池时,我们根据内存池大小和最小内存块大小计算出最大层数,然后初始化每个层级的内存块。在分配内存块时,我们根据请求的内存大小计算出所需的层数,然后在当前及以上层级查找空闲块,如果没有找到,则返回NULL;如果找到,则将块分裂为左右两块,直到分裂到所需层数。在释放内存块时,我们将块标记为空闲,并尝试合并块,直到无法再合并为止。在打印内存池状态时,我们根据块的层数将块分组,并打印出每个块的空闲状态。 这是一个简单的Buddy System的C语言实现,具有基本的分配和释放功能。在实际使用时,需要根据具体情况进行调整和优化。

升级 Byte buddy

好的,升级 Byte Buddy 可以通过以下步骤完成: 1. 在 Maven 或 Gradle 中添加 Byte Buddy 的依赖项。 2. 创建一个 Byte Buddy 的动态类型生成器。 3. 使用生成器创建一个新的类或修改现有类。 4. 将生成的类加载到 JVM 中。 以下是一个简单的示例代码,演示如何使用 Byte Buddy 创建一个新的类: ```java import net.bytebuddy.ByteBuddy; import net.bytebuddy.dynamic.loading.ClassLoadingStrategy; public class Example { public static void main(String[] args) throws Exception { Class<?> dynamicType = new ByteBuddy() .subclass(Object.class) .name("example.Type") .make() .load(Example.class.getClassLoader(), ClassLoadingStrategy.Default.INJECTION) .getLoaded(); System.out.println(dynamicType.getName()); } } ``` 这个示例创建了一个名为 "example.Type" 的新类,并将其加载到 JVM 中。你可以根据自己的需求修改这个示例代码。

相关推荐

最新推荐

recommend-type

基于ARM CPU的Linux物理内存管理

最后,文章通过源代码分析,展示了Linux内核实际如何实施这些管理策略。从伙伴系统的建立到更高层次的缓存管理机制,如SLOB、SLAB和SLUB,这些都是在伙伴系统之上构建的,用于优化特定类型的内存分配,如内核数据...
recommend-type

伙伴系统Buddy System 内存管理

伙伴系统(Buddy System)是一种高效的内存管理算法,广泛应用于Unix和Linux操作系统中。它的主要目标是有效地分配和回收内存,以减少存储空间中的空洞和碎片,从而提高内存利用率。 1. Buddy System的基本原理 ...
recommend-type

linux pagemap文件详解

Linux中的pagemap是自2.6.25内核版本以来引入的一种新接口,它允许用户空间程序通过读取/proc目录下的文件来检查页表及相关信息。这个功能为系统监控、性能分析以及内存管理提供了强大的工具。下面将详细解释pagemap...
recommend-type

多模态联合稀疏表示在视频目标跟踪中的应用

"该资源是一篇关于多模态联合稀疏表示在视频目标跟踪中的应用的学术论文,由段喜萍、刘家锋和唐降龙撰写,发表在中国科技论文在线。文章探讨了在复杂场景下,如何利用多模态特征提高目标跟踪的精度,提出了联合稀疏表示的方法,并在粒子滤波框架下进行了实现。实验结果显示,这种方法相比于单模态和多模态独立稀疏表示的跟踪算法,具有更高的精度。" 在计算机视觉领域,视频目标跟踪是一项关键任务,尤其在复杂的环境条件下,如何准确地定位并追踪目标是一项挑战。传统的单模态特征,如颜色、纹理或形状,可能不足以区分目标与背景,导致跟踪性能下降。针对这一问题,该论文提出了基于多模态联合稀疏表示的跟踪策略。 联合稀疏表示是一种将不同模态的特征融合在一起,以增强表示的稳定性和鲁棒性的方式。在该方法中,作者考虑到了分别对每种模态进行稀疏表示可能导致的不稳定性,以及不同模态之间的相关性。他们采用粒子滤波框架来实施这一策略,粒子滤波是一种递归的贝叶斯方法,适用于非线性、非高斯状态估计问题。 在跟踪过程中,每个粒子代表一种可能的目标状态,其多模态特征被联合稀疏表示,以促使所有模态特征产生相似的稀疏模式。通过计算粒子的各模态重建误差,可以评估每个粒子的观察概率。最终,选择观察概率最大的粒子作为当前目标状态的估计。这种方法的优势在于,它不仅结合了多模态信息,还利用稀疏表示提高了特征区分度,从而提高了跟踪精度。 实验部分对比了基于本文方法与其他基于单模态和多模态独立稀疏表示的跟踪算法,结果证实了本文方法在精度上的优越性。这表明,多模态联合稀疏表示在处理复杂场景的目标跟踪时,能有效提升跟踪效果,对于未来的研究和实际应用具有重要的参考价值。 关键词涉及的领域包括计算机视觉、目标跟踪、粒子滤波和稀疏表示,这些都是视频分析和模式识别领域的核心概念。通过深入理解和应用这些技术,可以进一步优化目标检测和跟踪算法,适应更广泛的环境和应用场景。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

文本摘要革命:神经网络如何简化新闻制作流程

![文本摘要革命:神经网络如何简化新闻制作流程](https://img-blog.csdnimg.cn/6d65ed8c20584c908173dd8132bb2ffe.png) # 1. 文本摘要与新闻制作的交汇点 在信息技术高速发展的今天,自动化新闻生成已成为可能,尤其在文本摘要领域,它将新闻制作的效率和精准度推向了新的高度。文本摘要作为信息提取和内容压缩的重要手段,对于新闻制作来说,其价值不言而喻。它不仅能快速提炼新闻要点,而且能够辅助新闻编辑进行内容筛选,减轻人力负担。通过深入分析文本摘要与新闻制作的交汇点,本章将从文本摘要的基础概念出发,进一步探讨它在新闻制作中的具体应用和优化策
recommend-type

日本南开海槽砂质沉积物粒径级配曲线

日本南开海槽是位于日本海的一个地质构造,其砂质沉积物的粒径级配曲线是用来描述该区域砂质沉积物中不同粒径颗粒的相对含量。粒径级配曲线通常是通过粒度分析得到的,它能反映出沉积物的粒度分布特征。 在绘制粒径级配曲线时,横坐标一般表示颗粒的粒径大小,纵坐标表示小于或等于某一粒径的颗粒的累计百分比。通过这样的曲线,可以直观地看出沉积物的粒度分布情况。粒径级配曲线可以帮助地质学家和海洋学家了解沉积环境的变化,比如水动力条件、沉积物来源和搬运过程等。 通常,粒径级配曲线会呈现出不同的形状,如均匀分布、正偏态、负偏态等。这些不同的曲线形状反映了沉积物的不同沉积环境和动力学特征。在南开海槽等深海环境中,沉积
recommend-type

Kubernetes资源管控与Gardener开源软件实践解析

"Kubernetes资源管控心得与Gardener开源软件资料下载.pdf" 在云计算领域,Kubernetes已经成为管理容器化应用程序的事实标准。然而,随着集群规模的扩大,资源管控变得日益复杂,这正是卢震宇,一位拥有丰富经验的SAP云平台软件开发经理,分享的主题。他强调了在Kubernetes环境中进行资源管控的心得体会,并介绍了Gardener这一开源项目,旨在解决云原生应用管理中的挑战。 在管理云原生应用时,企业面临诸多问题。首先,保持Kubernetes集群的更新和安全补丁安装是基础但至关重要的任务,这关系到系统的稳定性和安全性。其次,节点操作系统维护同样不可忽视,确保所有组件都能正常运行。再者,多云策略对于贴近客户、提供灵活部署选项至关重要。此外,根据负载自动扩展能力是现代云基础设施的必备功能,能够确保资源的有效利用。最后,遵循安全最佳实践,防止潜在的安全威胁,是保障业务连续性的关键。 为了解决这些挑战,Gardener项目应运而生。Gardener是一个基于Kubernetes构建的服务,它遵循“用Kubernetes管理一切”的原则,扩展了Kubernetes API服务器的功能,使得管理数千个企业级Kubernetes集群变得可能。通过Gardener,可以实现自动化升级、安全管理和跨云操作,大大减轻了Day2操作的复杂性。 Gardener的核心特性包括: 1. 自动化运维:Gardener能够自动化处理集群的生命周期管理,如创建、扩展、更新和删除。 2. 集群一致性:确保所有集群都遵循统一的标准和最佳实践,无论它们位于哪个云提供商之上。 3. 弹性伸缩:根据工作负载自动调整集群规模,以优化资源利用率。 4. 跨云支持:支持多云策略,帮助企业灵活地在不同云环境之间迁移。 5. 安全性:内置安全机制,确保集群及其应用程序的安全运行。 通过学习卢震宇分享的资料和深入理解Gardener项目,IT专业人员能够更好地应对Kubernetes资源管控的挑战,提升云原生应用的运营效率和可靠性。Gardener不仅是一个工具,更是一种方法论,它推动了Kubernetes在大规模企业环境中的落地和普及。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

递归神经网络(RNN):揭秘语言模型背后的革命力量

![递归神经网络(RNN):揭秘语言模型背后的革命力量](https://img-blog.csdnimg.cn/774026d297d54b56b7f4271afd6de26b.png) # 1. 递归神经网络基础与原理 ## 1.1 递归神经网络简介 递归神经网络(RNN)是深度学习领域中的一种核心神经网络架构,它能够处理序列数据。与传统的前馈神经网络不同,RNN具有记忆功能,通过循环连接在时间上存储信息,这使得它特别适合处理时间序列数据,如语言、音频、视频等。 ## 1.2 RNN的工作机制 RNN的工作原理是通过时间步序列展开,每一个时间步都使用相同的参数进行前向传播,这使得网