如何使用box提示基于sam模型实现labelme的标注
时间: 2024-04-17 11:28:40 浏览: 167
要使用基于SAM模型实现LabelMe的标注,可以按照以下步骤进行操作:
1. 准备数据:将待标注的图片和对应的JSON文件放置在同一个文件夹中。
2. 加载SAM模型:使用SAM模型的预训练权重初始化一个SAM实例,例如:
```
sam = sam_model_registry["default"](checkpoint="path_to_sam_checkpoint")
```
3. 遍历文件夹中的图片文件:对于每张图片,进行以下操作:
a. 读取图片和对应的JSON文件:
```
image_path = 'path_to_image'
json_path = 'path_to_json'
image = cv2.imread(image_path)
with open(json_path) as file:
data = json.load(file)
```
b. 获取图片的高度和宽度:
```
height, width, _ = image.shape
```
c. 提取已有的标注框信息:
```
shapes = data['shapes']
boxes = []
for shape in shapes:
points = shape['points']
x_coordinates = [point[0] for point in points]
y_coordinates = [point[1] for point in points]
min_x = min(x_coordinates)
min_y = min(y_coordinates)
max_x = max(x_coordinates)
max_y = max(y_coordinates)
box = [min_x, min_y, max_x, max_y]
boxes.append(box)
```
d. 使用SAM模型进行预测:
```
predictor = SamPredictor(sam)
masks, _, _ = predictor.predict([image], bboxes=[boxes], image_height=height, image_width=width)
```
e. 将预测的掩模保存为图片或更新JSON文件:
- 保存为图片:
```
for i, mask in enumerate(masks):
mask_filename = f"mask_{i + 1}_{image_path}"
mask_path = os.path.join(output_folder, mask_filename)
cv2.imwrite(mask_path, mask)
```
- 更新JSON文件:
```
for i, mask in enumerate(masks):
shape = {
"label": "object",
"points": [], # 将预测的掩模转换为多边形坐标
"group_id": None,
"shape_type": "polygon",
"flags": {}
}
# 根据mask生成多边形坐标
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
for point in contour:
x, y = point[0]
shape["points"].append([x, y])
data["shapes"].append(shape)
# 更新JSON文件
with open(json_path, 'w') as file:
json.dump(data, file)
```
这样,你就可以使用基于SAM模型的细胞识别进行LabelMe的标注了。请确保已经安装了必要的库和依赖项,并替换代码中的路径和文件名以适应你的实际情况。
阅读全文