python cv2 初始化跟踪器
时间: 2024-10-23 20:20:30 浏览: 41
在Python中,使用OpenCV(cv2)库来初始化跟踪器通常涉及到cv2.Tracker_create
方法。这里以常见的跟踪算法之一,卡尔曼滤波(Kalman Filter,简称KF)为例,以及更为流行的MOSSE(Minimum Output Sum of Squared Errors,最小误差平方和)和CSRT(Continuous Spatially Regularized Tracking,连续空间正则化跟踪)为例说明:
- 卡尔曼滤波(Kalman Filter, KF): ```python import cv2
获取第一帧
frame = ...
选择一个对象,确定初始边界框(x, y, w, h)
bbox = (x, y, w, h)
初始化KCF跟踪器
tracker_type = cv2.Tracker_KalmanFilter tracker = cv2.createTrackerKCFTracker() tracker.init(frame, bbox)
2. **MOSSE**:
```python
tracker_type = cv2.Tracker_MOSSE
tracker = cv2.Tracker_create(tracker_type)
tracker.init(frame, bbox)
- CSRT:
tracker_type = cv2.Tracker_CSRT tracker = cv2.Tracker_create(tracker_type) tracker.init(frame, bbox)
注意,cv2.Tracker_create
方法会根据传递的字符串参数自动识别跟踪器类型。初始化后,你可以遍历后续的视频帧来进行跟踪:
while True:
grabbed, frame = cap.read() # cap是视频流对象
if not grabbed:
break
success, bbox = tracker.update(frame)
if success:
# 轨迹成功,可以在帧上画出预测的边界框
cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3])), (0, 255, 0), 2)
else:
# 跟踪失败,可以选择重新初始化或结束追踪
print("Tracking lost.")
break
# 显示当前帧
cv2.imshow('Tracking', frame)
key = cv2.waitKey(1)