yolov8稀疏化训练
时间: 2023-09-10 15:12:19 浏览: 159
yolov8s模型进行剪枝源码
5星 · 资源好评率100%
稀疏化训练是指通过减少模型中不重要的参数来提高模型的效率和性能。关于yolov8的稀疏化训练,根据所提供的引用内容,我没有找到与yolov8相关的信息或具体方法。因此,我无法提供关于yolov8稀疏化训练的具体步骤和结果。如有其他问题,我将很愿意帮助回答。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [yolov5剪枝实战4: 正常训练和稀疏化训练](https://blog.csdn.net/weixin_38346042/article/details/127950877)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *3* [yolov5-6.0的稀疏化训练、结构化剪枝、微调](https://blog.csdn.net/qq_41920323/article/details/130297107)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文