tensorflow图像风格迁移
时间: 2023-10-06 07:07:56 浏览: 112
通过tensorflow实现风格迁移_python_代码_下载
5星 · 资源好评率100%
神经风格迁移是一种优化技术,通过将两个图像(一个内容图像和一个风格参考图像)进行混合,使输出的图像在保留内容图像的基础上融入了风格参考图像的风格。这一过程是通过优化输出图像,使其内容统计数据与内容图像相似,风格统计数据与风格参考图像相似来实现的。在TensorFlow中,可以使用VGG19等卷积网络提取图像中的内容和风格信息,然后进行训练,通过增加训练次数和噪声图片生成次数,可以减小图像的内容损失和风格损失。
对于输出图片大小的问题,原项目源码中有严格的限制,输出的噪声图片被压缩到固定大小。如果想修改输出图片的大小,可以使用Python的图像处理库PIL来实现。PIL库提供了丰富的方法,可以进行格式转换、旋转、裁剪、改变尺寸、像素处理、图片合并等操作。可以通过PIL库中的Image读取内容噪声图片,然后使用相关方法将输出噪声图片的大小改变为与内容图片相同的大小。
阅读全文