使用pytorch编写一个详细的DnCNN代码,并详细讲解DnCNN步骤
时间: 2024-10-20 08:06:20 浏览: 112
图像去噪DnCNN的Pytorch完复现代码,源码基础上添加DnCNN-B/CDnCNN-B、DnCNN-3的训练和测试复现
5星 · 资源好评率100%
深度残差卷积网络 (Deep Convolutional Neural Network, DnCNN) 是一种用于图像去噪的深度学习模型。在PyTorch中实现DnCNN,我们可以分为以下几个步骤:
1. 导入所需库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
```
2. 定义基本模块:
```python
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size, stride, padding)
self.bn2 = nn.BatchNorm2d(out_channels)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
return out + residual
class DnCNN(nn.Module):
def __init__(self, num_blocks=17, in_channels=1, out_channels=1, kernel_size=3):
super(DnCNN, self).__init__()
self.layers = []
for _ in range(num_blocks):
self.layers.append(ResidualBlock(in_channels, out_channels))
self.net = nn.Sequential(*self.layers)
def forward(self, x):
return self.net(x)
```
3. 数据预处理和加载:
```python
# 假设我们有加噪声的数据集
train_dataset = ... # 加载你的噪声数据集
transform = transforms.Compose([
transforms.ToTensor(),
])
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, transform=transform)
```
4. 初始化模型、损失函数和优化器:
```python
model = DnCNN() # 根据需要调整参数
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
```
5. 训练循环:
```python
num_epochs = 100
for epoch in range(num_epochs):
for i, (noisy_images, _) in enumerate(train_loader):
noisy_images = noisy_images.to(device) # 设定设备
clean_images = ... # 获取对应的干净图像(如果你有训练数据)
# 前向传播
output = model(noisy_images)
loss = criterion(output, clean_images)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}")
```
阅读全文