欧式距离手写数字识别python

时间: 2024-10-12 15:04:10 浏览: 70
欧式距离(Euclidean Distance)是一种常用的计算空间中两点间直线距离的方法,在手写数字识别中,它常用于特征向量之间的相似度比较。在Python中,我们可以利用numpy库来进行计算。手写数字识别通常会涉及到图像预处理、特征提取(如灰度化、平滑滤波、边缘检测等)、将图像转换为一维数组作为特征向量,然后计算每个样本间的欧氏距离。 以下是一个简单的示例: ```python import numpy as np from sklearn.metrics.pairwise import euclidean_distances # 假设我们有两组二维数据 (二维表示像素值) data1 = np.array([[0, 0], [1, 1]]) data2 = np.array([[2, 2], [3, 3]]) # 计算两个样本的欧氏距离 distances = euclidean_distances(data1.reshape(1, -1), data2.reshape(1, -1)) print("Distance between samples:", distances) # 对于手写数字识别,可能还会包含训练集和测试集中所有样本对的距离计算,然后通过聚类或分类算法找出最接近的手写数字。 ```
相关问题

第4关:手写数字识别

### 手写数字识别的实现方法 #### KNN算法简介 KNN(k-Nearest Neighbors)算法是一种监督学习算法,在模式识别领域广泛应用。该算法的核心思想是在特征空间中找到与待预测样本最接近的k个训练样本,然后根据这k个邻居的多数类来决定待测样本所属类别[^1]。 #### 数据预处理 对于手写数字图像数据集而言,通常会先将其转换成灰度图并调整大小到统一规格(如28×28像素)。接着将这些图片展平为一维向量作为输入特征向量用于后续运算。此外还需要对标签进行编码以便于计算机理解。 #### 距离度量方式 为了衡量两个样本间的相似程度,可以采用欧氏距离或其他形式的距离函数来进行计算。例如给定两个n维向量\(A=(a_1,a_2,...,a_n)\),\(B=(b_1,b_2,...,b_n)\),则它们之间欧式距离定义如下: \[d(A,B)=\sqrt{\sum_{i=1}^{n}(a_i-b_i)^2}\] ```python import numpy as np def euclidean_distance(point_a, point_b): """Calculate Euclidean distance between two points.""" return np.sqrt(np.sum((point_a - point_b)**2)) ``` #### 训练过程 实际上KNN并没有传统意义上的“训练”阶段;相反它属于懒惰学习者(lazy learner),即仅当有新实例到来时才去寻找其近邻并据此做出决策。因此所谓的“训练”,其实就是把所有的已知样例存储起来形成数据库供查询使用而已。 #### 预测流程 当接收到一个新的测试样本后,程序会遍历整个训练集中每一个记录,并利用上述提到过的某种距离测量手段求得两者间差距大小。随后选取其中最小的前k项构成候选集合,并统计各个不同类别出现次数多少从而得出最终判定结果。 ```python from collections import Counter class KNNClassifier: def __init__(self, k=3): self.k = k def fit(self, X_train, y_train): self.X_train = X_train self.y_train = y_train def predict(self, X_test): predictions = [] for test_sample in X_test: distances = [euclidean_distance(test_sample, train_sample) for train_sample in self.X_train] nearest_neighbors_indices = sorted(range(len(distances)), key=lambda i: distances[i])[:self.k] nearest_labels = [self.y_train[idx] for idx in nearest_neighbors_indices] most_common_label = Counter(nearest_labels).most_common(1)[0][0] predictions.append(most_common_label) return predictions ```

python3实现knn的三个例子(包含数据集),水果分类,识别手写数字

### 回答1: 例子1:水果分类 在使用Python3实现KNN算法进行水果分类的例子中,我们首先需要一个数据集,其中包含不同水果的特征数据和对应的分类标签。假设我们有一个数据集包含了苹果、香蕉和橙子的特征数据,比如颜色、重量和大小等。 我们可以使用sklearn库中的datasets模块生成一个随机的水果数据集。然后,我们需要将数据集分为训练集和测试集,一般将训练集占数据集的70%-80%,测试集占20%-30%。 接下来,我们可以使用KNN算法来对水果进行分类。首先,我们需要计算测试集中每个水果与训练集中的每个水果的距离。常用的距离计算方法有欧式距离、曼哈顿距离等。 然后,我们可以根据距离的大小,选择离测试样本最近的k个训练样本,统计这k个样本中属于每个分类的数量。最后,我们可以选择数量最多的分类作为测试样本的分类。 最后,我们可以通过比较预测结果和真实标签,计算我们的准确率,来评估分类模型的性能。 例子2:手写数字识别 在使用Python3实现KNN算法进行手写数字识别的例子中,我们同样需要一个数据集,其中包含手写数字的特征数据和对应的分类标签。 我们可以使用scikit-learn库中的datasets模块生成一个手写数字数据集。然后,我们需要将数据集分为训练集和测试集。 接下来,我们同样需要计算测试集中每个手写数字与训练集中的每个手写数字的距离。我们可以使用欧式距离或曼哈顿距离等距离计算方法。 然后,我们选择离测试样本最近的k个训练样本,统计这k个样本中属于每个数字的数量。最后,我们选择数量最多的数字作为测试样本的分类。 最后,我们可以通过比较预测结果和真实标签,计算准确率,来评估分类模型的性能。 例子3:自定义数据集的分类 除了上述的例子,我们还可以自定义数据集进行分类。假设我们有一个数据集,其中包含学生的特征数据和对应的分类标签,比如学生的成绩、出勤率等特征。 我们可以同样使用KNN算法对这个数据集进行分类。首先,我们需要将数据集分为训练集和测试集。 然后,我们同样需要计算测试集中每个样本与训练集中的每个样本的距离。然后,选择离测试样本最近的k个训练样本,统计这k个样本中属于每个分类的数量。最后,选择数量最多的分类作为测试样本的分类。 最后,我们可以通过比较预测结果和真实标签,计算准确率,来评估模型的性能。 以上是三个在Python3中实现KNN算法的例子,涵盖了水果分类、手写数字识别以及自定义数据集的分类。 ### 回答2: 1. 水果分类例子: 在Python3中使用KNN算法实现水果分类是一种常见的机器学习应用。我们可以使用一个包含水果特征和标签的数据集来训练模型,并根据新的水果特征来预测它们的类别。以下是一个示例数据集和实现代码: 数据集: 特征:水果重量(克)、水果颜色(红、绿、黄) 标签:水果类别(苹果、橙子、香蕉) 代码: from sklearn.neighbors import KNeighborsClassifier import numpy as np # 创建训练数据集 X_train = np.array([[150, 1], [200, 2], [100, 3], [250, 2]]) y_train = np.array(['苹果', '橙子', '苹果', '香蕉']) # 创建测试数据 X_test = np.array([[220, 1], [160, 2]]) # 创建KNN分类器 knn = KNeighborsClassifier(n_neighbors=3) # 训练模型 knn.fit(X_train, y_train) # 预测结果 predictions = knn.predict(X_test) print(predictions) # 输出预测结果 2. 识别手写数字例子: 识别手写数字是机器学习中经典的问题之一,我们可以使用Python3中的KNN算法来实现该任务。以下是一个示例数据集和实现代码: 数据集: 特征:每个数字被表示为一个8x8像素的图像,每个像素有一个灰度值(0-16) 标签:对应的数字(0-9) 代码: from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits # 加载手写数字数据集 digits = load_digits() # 创建训练数据集 X_train = digits.data[:1500] y_train = digits.target[:1500] # 创建测试数据集 X_test = digits.data[1500:] y_test = digits.target[1500:] # 创建KNN分类器 knn = KNeighborsClassifier(n_neighbors=3) # 训练模型 knn.fit(X_train, y_train) # 预测结果 predictions = knn.predict(X_test) print(predictions) # 输出预测结果 3. 其他例子: 除了水果分类和手写数字识别,Python3中的KNN算法还可以应用于许多其他领域,例如图像分类、垃圾邮件过滤、电影推荐等。具体的数据集和实现代码会根据不同的应用场景而有所不同。不过,KNN算法的核心思想和实现步骤是相似的,只需要根据具体的数据集和目标任务进行适当的调整。
阅读全文

相关推荐

zip
# 医护人员排班系统 ## 1. 项目介绍 本系统是一个基于SpringBoot框架开发的医护人员排班管理系统,用于医院管理医护人员的排班、调班等工作。系统提供了完整的排班管理功能,包括科室管理、人员管理、排班规则配置、自动排班等功能。 ## 2. 系统功能模块 ### 2.1 基础信息管理 - 科室信息管理:维护医院各科室基本信息 - 医护人员管理:管理医生、护士等医护人员信息 - 排班类型管理:配置不同的排班类型(如:早班、中班、晚班等) ### 2.2 排班管理 - 排班规则配置:设置各科室排班规则 - 自动排班:根据规则自动生成排班计划 - 排班调整:手动调整排班计划 - 排班查询:查看各科室排班情况 ### 2.3 系统管理 - 用户管理:管理系统用户 - 角色权限:配置不同角色的操作权限 - 系统设置:管理系统基础配置 ## 3. 技术架构 ### 3.1 开发环境 - JDK 1.8 - Maven 3.6 - MySQL 5.7 - SpringBoot 2.2.2 ### 3.2 技术栈 - 后端框架:SpringBoot - 持久层:MyBatis-Plus - 数据库:MySQL - 前端框架:Vue.js - 权限管理:Spring Security ## 4. 数据库设计 主要数据表: - 科室信息表(keshixinxi) - 医护人员表(yihurengyuan) - 排班类型表(paibanleixing) - 排班信息表(paibanxinxi) - 用户表(user) ## 5. 部署说明 ### 5.1 环境要求 - JDK 1.8+ - MySQL 5.7+ - Maven 3.6+ ### 5.2 部署步骤 1. 创建数据库并导入SQL脚本 2. 修改application.yml中的数据库配置 3. 执行maven打包命令:mvn clean package 4. 运行jar包:java -jar xxx.jar ## 6. 使用说明 ### 6.1 系统登录 - 管理员账号:admin - 初始密码:admin ### 6.2 基本操作流程 1. 维护基础信息(科室、人员等) 2. 配置排班规则 3. 生成排班计划 4. 查看和调整排班 ## 7. 注意事项 1. 首次使用请及时修改管理员密码 2. 定期备份数据库 3. 建议定期检查和优化排班规则

大家在看

recommend-type

yolo开发人工智能小程序经验和总结.zip

yolo开发人工智能小程序经验和总结.zipyolo开发人工智能小程序经验和总结.zipyolo开发人工智能小程序经验和总结.zipyolo开发人工智能小程序经验和总结.zip
recommend-type

基于MATLAB的表面裂纹识别与检测

基于MATLAB的表面裂纹识别与检测,该代码可以根据自己需要去识别与检测特定对象的表面裂纹,例如,路面裂纹检测、钢管裂纹检测、平面裂纹检测、种子等农产品表面裂纹检测。
recommend-type

Modbus on AT32 MCU

本应用笔记介绍了如何将FreeMODBUS协议栈移植到AT32F43x单片机方法。本文档提供的源代码演 示了使用Modbus的应用程序。单片机作为Modbus从机,可通过RS485或RS232与上位机相连,与 Modbus Poll调试工具(Modbus主机)进行通讯。 注:本应用笔记对应的代码是基于雅特力提供的V2.x.x 板级支持包(BSP)而开发,对于其他版本BSP,需要 注意使用上的区别。
recommend-type

论文研究-一种面向HDFS中海量小文件的存取优化方法.pdf

为了解决HDFS(Hadoop distributed file system)在存储海量小文件时遇到的NameNode内存瓶颈等问题,提高HDFS处理海量小文件的效率,提出一种基于小文件合并与预取的存取优化方案。首先通过分析大量小文件历史访问日志,得到小文件之间的关联关系,然后根据文件相关性将相关联的小文件合并成大文件后再存储到HDFS。从HDFS中读取数据时,根据文件之间的相关性,对接下来用户最有可能访问的文件进行预取,减少了客户端对NameNode节点的访问次数,提高了文件命中率和处理速度。实验结果证明,该方法有效提升了Hadoop对小文件的存取效率,降低了NameNode节点的内存占用率。
recommend-type

Gephi Cookbook 无水印原版pdf

Gephi Cookbook 英文无水印原版pdf pdf所有页面使用FoxitReader、PDF-XChangeViewer、SumatraPDF和Firefox测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 查看此书详细信息请在美国亚马逊官网搜索此书

最新推荐

recommend-type

手写数字识别(python底层实现)报告.docx

【标题】:手写数字识别(Python 底层实现)报告 【描述】:本报告主要探讨了如何使用Python从零开始实现手写数字识别,具体包括理解MNIST数据集,构建多层感知机(MLP)网络,优化参数以提高识别准确性,以及通过...
recommend-type

python实现基于SVM手写数字识别功能

主要为大家详细介绍了python实现基于SVM手写数字识别功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

手写数字识别:实验报告

实验报告“手写数字识别”主要探讨了在AI领域如何运用不同的神经网络模型来识别手写数字。实验基于AIstudio平台,涵盖了数据预处理、数据加载、多种网络结构的尝试、损失函数的选择以及优化算法的应用,并展示了实验...
recommend-type

Python实现识别手写数字 Python图片读入与处理

本文主要介绍如何使用Python实现手写数字的识别,以及图片的读入与处理。在进行手写数字识别的过程中,首先要对图片进行一系列的预处理,包括读入图片、转换为灰度图像、去除背景噪声、切割图像、调整图像大小以及...
recommend-type

Python利用逻辑回归模型解决MNIST手写数字识别问题详解

【Python逻辑回归模型解决MNIST手写数字识别】 在机器学习领域,图像识别是一个重要的应用场景,尤其是对于手写数字的识别。MNIST数据集是这个领域的一个经典基准,它包含了大量28x28像素的手写数字图像。这篇文章...
recommend-type

Spring Websocket快速实现与SSMTest实战应用

标题“websocket包”指代的是一个在计算机网络技术中应用广泛的组件或技术包。WebSocket是一种网络通信协议,它提供了浏览器与服务器之间进行全双工通信的能力。具体而言,WebSocket允许服务器主动向客户端推送信息,是实现即时通讯功能的绝佳选择。 描述中提到的“springwebsocket实现代码”,表明该包中的核心内容是基于Spring框架对WebSocket协议的实现。Spring是Java平台上一个非常流行的开源应用框架,提供了全面的编程和配置模型。在Spring中实现WebSocket功能,开发者通常会使用Spring提供的注解和配置类,简化WebSocket服务端的编程工作。使用Spring的WebSocket实现意味着开发者可以利用Spring提供的依赖注入、声明式事务管理、安全性控制等高级功能。此外,Spring WebSocket还支持与Spring MVC的集成,使得在Web应用中使用WebSocket变得更加灵活和方便。 直接在Eclipse上面引用,说明这个websocket包是易于集成的库或模块。Eclipse是一个流行的集成开发环境(IDE),支持Java、C++、PHP等多种编程语言和多种框架的开发。在Eclipse中引用一个库或模块通常意味着需要将相关的jar包、源代码或者配置文件添加到项目中,然后就可以在Eclipse项目中使用该技术了。具体操作可能包括在项目中添加依赖、配置web.xml文件、使用注解标注等方式。 标签为“websocket”,这表明这个文件或项目与WebSocket技术直接相关。标签是用于分类和快速检索的关键字,在给定的文件信息中,“websocket”是核心关键词,它表明该项目或文件的主要功能是与WebSocket通信协议相关的。 文件名称列表中的“SSMTest-master”暗示着这是一个版本控制仓库的名称,例如在GitHub等代码托管平台上。SSM是Spring、SpringMVC和MyBatis三个框架的缩写,它们通常一起使用以构建企业级的Java Web应用。这三个框架分别负责不同的功能:Spring提供核心功能;SpringMVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架;MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。Master在这里表示这是项目的主分支。这表明websocket包可能是一个SSM项目中的模块,用于提供WebSocket通讯支持,允许开发者在一个集成了SSM框架的Java Web应用中使用WebSocket技术。 综上所述,这个websocket包可以提供给开发者一种简洁有效的方式,在遵循Spring框架原则的同时,实现WebSocket通信功能。开发者可以利用此包在Eclipse等IDE中快速开发出支持实时通信的Web应用,极大地提升开发效率和应用性能。
recommend-type

电力电子技术的智能化:数据中心的智能电源管理

# 摘要 本文探讨了智能电源管理在数据中心的重要性,从电力电子技术基础到智能化电源管理系统的实施,再到技术的实践案例分析和未来展望。首先,文章介绍了电力电子技术及数据中心供电架构,并分析了其在能效提升中的应用。随后,深入讨论了智能化电源管理系统的组成、功能、监控技术以及能
recommend-type

通过spark sql读取关系型数据库mysql中的数据

Spark SQL是Apache Spark的一个模块,它允许用户在Scala、Python或SQL上下文中查询结构化数据。如果你想从MySQL关系型数据库中读取数据并处理,你可以按照以下步骤操作: 1. 首先,你需要安装`PyMySQL`库(如果使用的是Python),它是Python与MySQL交互的一个Python驱动程序。在命令行输入 `pip install PyMySQL` 来安装。 2. 在Spark环境中,导入`pyspark.sql`库,并创建一个`SparkSession`,这是Spark SQL的入口点。 ```python from pyspark.sql imp
recommend-type

新版微软inspect工具下载:32位与64位版本

根据给定文件信息,我们可以生成以下知识点: 首先,从标题和描述中,我们可以了解到新版微软inspect.exe与inspect32.exe是两个工具,它们分别对应32位和64位的系统架构。这些工具是微软官方提供的,可以用来下载获取。它们源自Windows 8的开发者工具箱,这是一个集合了多种工具以帮助开发者进行应用程序开发与调试的资源包。由于这两个工具被归类到开发者工具箱,我们可以推断,inspect.exe与inspect32.exe是用于应用程序性能检测、问题诊断和用户界面分析的工具。它们对于开发者而言非常实用,可以在开发和测试阶段对程序进行深入的分析。 接下来,从标签“inspect inspect32 spy++”中,我们可以得知inspect.exe与inspect32.exe很有可能是微软Spy++工具的更新版或者是有类似功能的工具。Spy++是Visual Studio集成开发环境(IDE)的一个组件,专门用于Windows应用程序。它允许开发者观察并调试与Windows图形用户界面(GUI)相关的各种细节,包括窗口、控件以及它们之间的消息传递。使用Spy++,开发者可以查看窗口的句柄和类信息、消息流以及子窗口结构。新版inspect工具可能继承了Spy++的所有功能,并可能增加了新功能或改进,以适应新的开发需求和技术。 最后,由于文件名称列表仅提供了“ed5fa992d2624d94ac0eb42ee46db327”,没有提供具体的文件名或扩展名,我们无法从这个文件名直接推断出具体的文件内容或功能。这串看似随机的字符可能代表了文件的哈希值或是文件存储路径的一部分,但这需要更多的上下文信息来确定。 综上所述,新版的inspect.exe与inspect32.exe是微软提供的开发者工具,与Spy++有类似功能,可以用于程序界面分析、问题诊断等。它们是专门为32位和64位系统架构设计的,方便开发者在开发过程中对应用程序进行深入的调试和优化。同时,使用这些工具可以提高开发效率,确保软件质量。由于这些工具来自Windows 8的开发者工具箱,它们可能在兼容性、效率和用户体验上都经过了优化,能够为Windows应用的开发和调试提供更加专业和便捷的解决方案。
recommend-type

如何运用电力电子技术实现IT设备的能耗监控

# 摘要 随着信息技术的快速发展,IT设备能耗监控已成为提升能效和减少环境影响的关键环节。本文首先概述了电力电子技术与IT设备能耗监控的重要性,随后深入探讨了电力电子技术的基础原理及其在能耗监控中的应用。文章详细分析了IT设备能耗监控的理论框架、实践操作以及创新技术的应用,并通过节能改造案例展示了监控系统构建和实施的成效。最后,本文展望了未来能耗监控技术的发展趋势,同时