深度强化学习和强化学习的差别
时间: 2023-07-31 22:13:18 浏览: 427
崇志宏:强化学习和深度强化学习
5星 · 资源好评率100%
深度强化学习(Deep Reinforcement Learning)是强化学习(Reinforcement Learning)与深度学习(Deep Learning)的结合。强化学习是一种机器学习方法,通过智能体与环境的交互来学习最优的行为策略。而深度学习是一种机器学习技术,通过多层神经网络模型来学习输入数据的表示和特征。
强化学习关注于在一个未知环境中,通过试错和奖励机制来学习最优的决策策略。它通过定义一个智能体(agent)和环境(environment)之间的交互过程,智能体根据当前的状态(state)选择最优的动作(action),并接收环境返回的奖励(reward)。通过不断与环境的交互,智能体通过学习来改善自己的行为策略。
深度强化学习则在强化学习的基础上引入了深度神经网络。深度神经网络是一种具有多层隐藏层的神经网络模型,它可以对复杂的输入数据进行高级特征提取和表示学习。在深度强化学习中,深度神经网络被用来近似价值函数或策略函数,以便智能体能够处理高维的状态空间或动作空间。通过深度神经网络的逼近能力,深度强化学习可以解决更复杂的强化学习问题。
总结来说,深度强化学习是强化学习与深度学习的结合,利用深度神经网络来处理复杂的状态和动作空间,提高强化学习在复杂环境中的表现能力。
阅读全文