二维表格离散程度分析绘图代码
时间: 2024-09-08 22:02:32 浏览: 82
二维表格离散程度分析通常涉及到数据的统计学分析,比如方差、标准差、四分位数等统计指标的计算,以及绘制箱形图(Boxplot)等可视化图表。这些分析有助于了解数据的分布情况和离散程度。以下是一个使用Python语言和matplotlib库进行二维表格数据离散程度分析的基本示例代码:
```python
import numpy as np
import matplotlib.pyplot as plt
# 假设有一个二维表格数据,我们使用随机数据进行示例
# 例如,生成两组随机数据作为示例
np.random.seed(0)
data1 = np.random.normal(0, 1, 100)
data2 = np.random.normal(5, 2, 100)
# 将数据放入二维数组中
data = np.array([data1, data2])
# 计算描述性统计量
mean = np.mean(data, axis=1)
std_dev = np.std(data, axis=1)
median = np.median(data, axis=1)
quartiles = np.percentile(data, [25, 50, 75], axis=1)
# 绘制箱形图
plt.boxplot(data.T, positions=range(1, len(data)+1), widths=0.5)
plt.xticks(range(1, len(data)+1), ['Group 1', 'Group 2']) # 设置x轴标签
plt.ylabel('Value')
plt.title('Boxplot of Two Groups')
# 显示均值和标准差
for i, (m, sd) in enumerate(zip(mean, std_dev)):
plt.plot(i+1, m, 'o', color='red') # 标记均值
plt.plot(i+1, m-sd, 'o', color='blue') # 标记均值-标准差
plt.plot(i+1, m+sd, 'o', color='blue') # 标记均值+标准差
plt.show()
```
这段代码首先创建了两组正态分布的随机数据,并将它们放入一个二维数组中。然后计算了每组数据的均值、标准差和四分位数,并绘制了箱形图来直观显示每组数据的分布情况。在箱形图的基础上,还标记了每组数据的均值和均值加减一个标准差的位置。
阅读全文