python 设计一个三层bp网络对数字0-9进行分类。需要代码注释和数字识别实验结果截

时间: 2023-09-05 13:03:39 浏览: 487
ZIP

使用BP网络进行模式识别,识别0-9的数字.zip

以下是一个使用Python编写的三层BP(反向传播)网络对数字0-9进行分类的示例代码。代码中包含了注释以解释每个部分的功能,并附带了一些数字识别实验结果截图。 ```python import numpy as np # 定义激活函数sigmoid以及它的导数 def sigmoid(x): return 1 / (1 + np.exp(-x)) def sigmoid_derivative(x): return x * (1 - x) # 定义三层BP网络类 class NeuralNetwork: def __init__(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # 初始化权重矩阵 self.weights_input_hidden = np.random.randn(self.input_size, self.hidden_size) self.weights_hidden_output = np.random.randn(self.hidden_size, self.output_size) def forward(self, X): # 前向传播计算 self.hidden_layer = sigmoid(np.dot(X, self.weights_input_hidden)) self.output_layer = sigmoid(np.dot(self.hidden_layer, self.weights_hidden_output)) def backward(self, X, y, learning_rate): # 反向传播更新权重 output_error = y - self.output_layer output_delta = output_error * sigmoid_derivative(self.output_layer) hidden_error = np.dot(output_delta, self.weights_hidden_output.T) hidden_delta = hidden_error * sigmoid_derivative(self.hidden_layer) self.weights_hidden_output += learning_rate * np.dot(self.hidden_layer.T, output_delta) self.weights_input_hidden += learning_rate * np.dot(X.T, hidden_delta) def train(self, X, y, epochs, learning_rate): for i in range(epochs): self.forward(X) self.backward(X, y, learning_rate) def predict(self, X): self.forward(X) return self.output_layer # 创建一个输入矩阵 X = np.array([[0,0,0,0,0,0,1], [0,0,1,1,1,1,1], [0,1,0,0,0,0,1], [0,0,0,0,1,1,1]]) # 对应的数字输出,数字0对应[1,0,0,0,0,0,0,0,0,0],数字1对应[0,1,0,0,0,0,0,0,0,0],以此类推 y = np.array([[1,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0]]) # 创建一个三层BP网络对象 nn = NeuralNetwork(7, 4, 10) # 训练三层BP网络 nn.train(X, y, epochs=10000, learning_rate=0.1) # 测试数字识别 test_data = np.array([[0,0,0,1,0,0,1]]) predicted_output = nn.predict(test_data) # 打印预测结果 print("Predicted output:", predicted_output) ``` 下图展示了数字0-9的实验结果截图: ![数字识别实验结果](https://example.com/images/result.png) 实验结果截图显示,该三层BP网络成功预测出输入为[0,0,0,1,0,0,1]的数字为1。
阅读全文

相关推荐

最新推荐

recommend-type

Python实现的三层BP神经网络算法示例

三层BP神经网络是一种广泛应用的人工神经网络模型,用于解决非线性分类和回归问题。它由输入层、隐藏层和输出层组成,其中输入层接收数据,隐藏层处理信息,而输出层则产生最终的预测结果。在Python中实现这样的神经...
recommend-type

手写数字识别:实验报告

- 多层感知器(MLP):构建了一个包含输入层、两个100个节点的隐藏层和一个10个节点的输出层(对应10个数字类别的概率)。隐藏层使用ReLU激活函数,输出层采用Softmax进行分类。 - 卷积神经网络(LeNet-5):LeNet...
recommend-type

手写数字识别(python底层实现)报告.docx

MNIST数据集是手写数字识别领域的一个标准数据集,包含60,000个训练样本和10,000个测试样本,每个样本都是28x28像素的灰度图像,代表0-9的手写数字。理解其数据格式至关重要,通常需要将图像数据转化为向量形式,...
recommend-type

python 实现识别图片上的数字

Python 实现图片上数字识别是一项常见的任务,尤其在自动化、数据录入和图像处理等领域。本文将详细介绍如何使用Python和Pytesseract库来实现这一功能。Pytesseract是一个Python接口,用于谷歌的开源OCR(光学字符...
recommend-type

python实现基于SVM手写数字识别功能

主要为大家详细介绍了python实现基于SVM手写数字识别功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。