深度强化学习简单实战代码
时间: 2024-10-09 12:03:41 浏览: 23
深度强化学习(Deep Reinforcement Learning, DRL)是一种结合了深度神经网络和强化学习的技术,用于解决高维、复杂环境下的决策问题。下面是一个简单的使用Python和Keras库实现的Q-learning(一种常用的强化学习算法)的代码示例,它模拟了一个迷宫环境:
```python
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
# 定义迷宫环境的大小和动作空间
ENV_SIZE = 4
ACTION_SPACE = 4
# 初始化模型
model = Sequential()
model.add(Dense(64, input_shape=(ENV_SIZE*ENV_SIZE,), activation='relu'))
model.add(Dense(ACTION_SPACE, activation='linear'))
# Q值函数初始化
q_table = np.zeros((ENV_SIZE*ENV_SIZE, ACTION_SPACE))
def play_game(state):
# 获取当前状态对应的Q值向量
state_values = q_table[state]
# 使用ε-greedy策略选择动作
if np.random.rand() < EPSILON:
action = np.random.choice(ACTION_SPACE)
else:
action = np.argmax(state_values)
return action
# 训练过程
for episode in range(MAX_EPISODES):
# 初始化游戏环境
state = np.zeros(ENV_SIZE*ENV_SIZE)
done = False
while not done:
action = play_game(state)
new_state, reward, done = env.step(action)
# 更新Q表
max_future_q = np.max(q_table[new_state])
current_q = q_table[state][action]
new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * (reward + GAMMA * max_future_q)
q_table[state][action] = new_q
state = new_state
# 每隔一定步数,降低探索率
if episode % DECAY_EPSILON == 0 and episode > 0:
EPSILON -= DECAY_EPSILON_RATE
#
阅读全文