ddpg算法连续山地这
时间: 2024-12-29 19:26:39 浏览: 18
### DDPG算法在连续山地车环境中的实现与应用
#### 1. 环境介绍
连续山地车(MountainCarContinuous-v0)是一个经典的控制问题,目标是让一辆汽车通过不断加速来克服重力并到达山顶。此环境中存在两个主要的状态变量:位置和速度;而行动则由加速度构成,属于连续的动作空间。
#### 2. DDPG算法概述
DDPG (Deep Deterministic Policy Gradient) 是一种结合了策略梯度方法和Q-learning优点的技术,适用于处理具有高维输入或连续输出的任务。它利用两组神经网络——Actor 和 Critic 来分别表示行为决策过程及其价值评估机制[^1]。
对于连续山地车这样的任务来说:
- **Actor Network**: 接收当前状态作为输入,并输出最佳操作建议;
- **Critic Network**: 对组合后的状态-动作对给出评价分数,指导Actor调整参数以优化长期奖励。
#### 3. Python代码示例
下面提供了一个简化版的DDPG实现框架,针对OpenAI Gym里的`MountainCarContinuous-v0`环境进行了适配:
```python
import gym
from ddpg import DDPGAgent, ReplayBuffer
env_name = 'MountainCarContinuous-v0'
env = gym.make(env_name)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
agent = DDPGAgent(state_dim=state_dim,
action_dim=action_dim,
hidden_layers=[400, 300],
actor_lr=1e-4,
critic_lr=1e-3,
gamma=0.99,
tau=0.001,
batch_size=64)
buffer = ReplayBuffer(max_size=int(1e6))
episodes = 500
for episode in range(episodes):
state = env.reset()
done = False
while not done:
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
buffer.store_transition((state, action, reward, next_state, int(done)))
if len(buffer.buffer)>batch_size:
transitions = buffer.sample(batch_size)
states, actions, rewards, new_states, dones = zip(*transitions)
target_q_values = agent.target_critic([new_states, agent.target_actor(new_states)])
y_i = []
for i in range(len(rewards)):
terminal = dones[i]
if terminal:
y_i.append(rewards[i])
else:
y_i.append(rewards[i]+gamma*target_q_values[i][0])
predicted_q_value = agent.critic_model([states,actions])
loss = ((predicted_q_value-y_i)**2).mean()
gradients = tf.gradients(predicted_q_value, actions)[0]
actor_gradients = list(zip(agent.actor.trainable_weights,gradients))
optimizer.apply_gradients(actor_gradients)
# 更新critic网络权重...
# 更新actor网络权重...
state = next_state
print('Training completed.')
```
请注意上述伪代码仅为示意性质,实际运行前需补充完整细节如损失函数计算、模型更新逻辑等部分。
阅读全文