VAE重构数据伪代码
时间: 2024-04-05 16:06:33 浏览: 225
以下是VAE重构数据的伪代码:
```
# 定义编码器
def encoder(input_img):
# 编码器网络结构
# ...
# 计算均值和方差
z_mean, z_log_variance = ...
return z_mean, z_log_variance
# 定义解码器
def decoder(z):
# 解码器网络结构
# ...
# 重构图像
reconstructed_img = ...
return reconstructed_img
# 构建VAE模型
input_img = ...
z_mean, z_log_variance = encoder(input_img)
z = z_mean + exp(z_log_variance) * epsilon
reconstructed_img = decoder(z)
model = Model(input_img, reconstructed_img)
```
以上是用Keras实现VAE的伪代码。首先,定义了编码器和解码器的网络结构。编码器将输入图像压缩为低维表示,计算出均值和方差。解码器将低维表示恢复为原始数据,生成重构图像。然后,通过将均值和方差结合随机噪声epsilon生成潜在变量z。最后,构建VAE模型,输入图像经过编码器得到z,再通过解码器生成重构图像。
#### 引用[.reference_title]
- *1* [Python深度学习之VAE](https://blog.csdn.net/u012419550/article/details/108186180)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* *3* [AI绘画与CV多模态能力的起源:从VAE、扩散模型DDPM、DETR到ViT/MAE/Swin transformer](https://blog.csdn.net/v_JULY_v/article/details/130361959)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文