LSTM动作识别 pytorch
时间: 2023-11-09 07:02:22 浏览: 84
LSTM是一种循环神经网络,可以用于时间序列数据的建模和预测。在动作识别中,可以使用LSTM来识别人体动作。
在PyTorch中,可以使用torch.nn.LSTM模块来构建LSTM模型。需要将输入数据转换为三维张量,分别表示序列长度、批次大小和特征维度。可以使用torch.utils.data.Dataset和torch.utils.data.DataLoader来加载和处理数据。
以下是一个简单的LSTM动作识别模型的示例代码:
```python
import torch
import torch.nn as nn
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
h0 = torch.zeros(1, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(1, x.size(0), self.hidden_size).to(x.device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
# 定义模型参数
input_size = 10
hidden_size = 20
num_classes = 5
# 初始化模型
model = LSTMModel(input_size, hidden_size, num_classes)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(num_epochs):
for i, (inputs, labels) in enumerate(train_loader):
inputs = inputs.to(device)
labels = labels.to(device)
# 前向传播
outputs = model(inputs)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 测试模型
with torch.no_grad():
correct = 0
total = 0
for inputs, labels in test_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy: {} %'.format(100 * correct / total))
```
阅读全文