Timemonitor种类
时间: 2024-08-14 11:06:24 浏览: 45
Timemonitor通常是指一款用于性能监控和管理系统资源的应用程序或工具,特别是在软件开发中常用于跟踪和分析应用程序的运行时间、CPU使用率等关键指标。它可以帮助开发者诊断和优化系统性能,常见的种类包括:
1. 自动化监控工具:例如JProfiler(Java)或VisualVM(也是Java的一部分),它们可以实时查看线程活动、内存消耗等。
2. 集成开发环境插件:IDE(如Eclipse、IntelliJ IDEA)内置的性能监视器,可以在编码过程中即时检测性能瓶颈。
3. 网络监控服务:提供远程服务器性能监控,比如New Relic、AppDynamics这样的第三方云服务。
4. 开源项目:有一些开源的性能监测库或命令行工具,比如Pymonit、top等,适合特定操作系统或场景。
相关问题
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor class LossCallBack(LossMonitor): """ Monitor the loss in training. If the loss in NAN or INF terminating training. """ def __init__(self, has_trained_epoch=0, per_print_times=per_print_steps): super(LossCallBack, self).__init__() self.has_trained_epoch = has_trained_epoch self._per_print_times = per_print_times def step_end(self, run_context): cb_params = run_context.original_args() loss = cb_params.net_outputs if isinstance(loss, (tuple, list)): if isinstance(loss[0], ms.Tensor) and isinstance(loss[0].asnumpy(), np.ndarray): loss = loss[0] if isinstance(loss, ms.Tensor) and isinstance(loss.asnumpy(), np.ndarray): loss = np.mean(loss.asnumpy()) cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1 if isinstance(loss, float) and (np.isnan(loss) or np.isinf(loss)): raise ValueError("epoch: {} step: {}. Invalid loss, terminating training.".format( cb_params.cur_epoch_num, cur_step_in_epoch)) if self._per_print_times != 0 and cb_params.cur_step_num % self._per_print_times == 0: # pylint: disable=line-too-long print("epoch: %s step: %s, loss is %s" % (cb_params.cur_epoch_num + int(self.has_trained_epoch), cur_step_in_epoch, loss), flush=True) time_cb = TimeMonitor(data_size=step_size) loss_cb = LossCallBack(has_trained_epoch=0) cb = [time_cb, loss_cb] ckpt_save_dir = cfg['output_dir'] device_target = context.get_context('device_target') if cfg['save_checkpoint']: config_ck = CheckpointConfig(save_checkpoint_steps=save_ckpt_num*step_size, keep_checkpoint_max=10) # config_ck = CheckpointConfig(save_checkpoint_steps=5*step_size, keep_checkpoint_max=10) ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck) cb += [ckpt_cb]
这段代码定义了一些回调函数,用于在训练过程中监控和保存模型。
首先,定义了一个名为LossCallBack的类,继承自LossMonitor回调类。它重写了step_end方法,在每个训练步骤结束时监控损失值。如果损失值为NaN或INF,将抛出ValueError以终止训练。如果_per_print_times参数不为0且当前步骤数是_per_print_times的倍数,将打印当前的训练损失值。
然后,创建了一个TimeMonitor回调实例和一个LossCallBack回调实例。TimeMonitor用于监控训练时间,LossCallBack用于监控训练损失值。
接着,创建了一个回调列表cb,并将time_cb和loss_cb添加到列表中。同时,获取配置文件中的ckpt_save_dir和device_target。
如果配置文件中的save_checkpoint为True,则创建一个CheckpointConfig实例config_ck,用于配置模型保存的参数(保存间隔、最大保存个数等)。然后,创建一个ModelCheckpoint回调实例ckpt_cb,并将其添加到回调列表cb中。
最后,返回回调列表cb,用于在训练过程中使用。
阅读全文