softmax方法多分类的matlab代码实现
时间: 2023-11-20 16:55:42 浏览: 98
以下是softmax方法多分类的Matlab代码实现:
```matlab
function [W, b] = softmax_train(X, Y, lambda, max_iter)
% X: 训练数据,每一列代表一个样本
% Y: 训练数据的标签,每一列代表一个样本的标签
% lambda: 正则化参数
% max_iter: 最大迭代次数
% 获取样本数和特征数
[num_cases, num_dims] = size(X);
% 获取标签数
num_classes = max(Y);
% 初始化权重和偏置
W = rand(num_dims, num_classes) * 0.01;
b = zeros(num_classes, 1);
% 进行梯度下降
for i = 1:max_iter
% 计算softmax函数
scores = bsxfun(@plus, X * W, b');
exp_scores = exp(scores);
probs = bsxfun(@rdivide, exp_scores, sum(exp_scores, 2));
% 计算损失函数
correct_logprobs = -log(probs(sub2ind(size(probs), 1:num_cases, Y')));
data_loss = sum(correct_logprobs) / num_cases;
reg_loss = 0.5 * lambda * sum(sum(W .^ 2));
loss = data_loss + reg_loss;
% 计算梯度
dscores = probs;
dscores(sub2ind(size(dscores),1:num_cases, Y')) = dscores(sub2ind(size(dscores), 1:num_cases, Y')) - 1;
dscores = dscores / num_cases;
dW = X' * dscores + lambda * W;
db = sum(dscores, 1)';
% 更新权重和偏置
W = W - 0.01 * dW;
b = b - 0.01 * db;
end
end
```
这段代码实现了softmax方法的多分类问题,其中X是训练数据,Y是训练数据的标签,lambda是正则化参数,max_iter是最大迭代次数。函数返回训练好的权重W和偏置b。
阅读全文