matlab分层抽样
时间: 2023-10-31 19:54:53 浏览: 257
在Matlab中,分层抽样是一种用于数据集的抽样方法。它可以根据数据的类别将数据划分为不同的层次,然后在每个层次中按照一定比例抽取数据作为训练集,剩下的数据作为测试集。具体的实现方法可以使用以下Matlab代码实现:
```matlab
function [train_x,train_y,test_x,test_y = getdata()
[data,~ = xlsread("XXX.xlsx");
data(find(isnan(data)))=0; % 去掉数据中的NaN
labels = data(:,end); % 最后一列是标签列
train_x=[];
train_y=[];
test_x=[];
test_y=[];
%% 层次抽样
% 在数据的每一类中,按一定比例抽取数据,构成训练集,剩下的作为测试集
scala = 0.7; % 每一类中,训练集抽取的比例
for label=1:length(unique(labels))
cate = find(labels==label);
half = int32(length(cate)*scala);
train = cate(randperm(length(cate),half)); %当前类下,抽取的训练集的所在行
test = setdiff(cate,train); % 当前类下,剩余的也就是测试集的所在行
train_x = [train_x;data(train,1:end-1)];
train_y = [train_y;labels(train)];
test_x = [test_x;data(test,1:end-1)];
test_y = [test_y;labels(test)];
end
end
```
这段代码中,首先从Excel文件中读取数据,然后将其中的NaN值替换为0。接着,根据数据的最后一列标签将数据划分为不同的类别。然后,根据设定的比例,从每个类别中抽取相应比例的数据作为训练集,剩下的数据作为测试集。最终,将训练集和测试集分别存储在train_x、train_y、test_x和test_y中。
这种分层抽样方法可以有效地保证训练集和测试集中各个类别的数据分布基本一致,从而更好地反映真实情况,并且可以减小训练集和测试集之间的差距。因此,使用分层抽样方法可以提高模型的准确性和泛化能力。
阅读全文
相关推荐


















