transformer二分类代码
时间: 2023-09-29 20:07:56 浏览: 154
以下是一个使用Transformer模型进行二分类的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
from torchtext.data import Field, TabularDataset, BucketIterator
# 定义Transformer模型
class TransformerClassifier(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers, num_heads, dropout):
super(TransformerClassifier, self).__init__()
self.embedding = nn.Embedding(input_dim, hidden_dim)
self.encoder = nn.TransformerEncoder(
nn.TransformerEncoderLayer(hidden_dim, num_heads, hidden_dim, dropout),
num_layers
)
self.fc = nn.Linear(hidden_dim, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, text):
embedded = self.embedding(text)
embedded = embedded.permute(1, 0, 2)
encoded = self.encoder(embedded)
pooled = encoded.mean(dim=0)
pooled = self.dropout(pooled)
return self.fc(pooled)
# 设置超参数
input_dim = len(TEXT.vocab)
hidden_dim = 256
output_dim = 2
num_layers = 4
num_heads = 8
dropout = 0.5
# 初始化模型和优化器
model = TransformerClassifier(input_dim, hidden_dim, output_dim, num_layers, num_heads, dropout)
optimizer = optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss()
# 训练模型
for epoch in range(num_epochs):
for batch in train_iterator:
text = batch.text
label = batch.label
optimizer.zero_grad()
output = model(text)
loss = criterion(output, label)
loss.backward()
optimizer.step()
# 模型评估
model.eval()
correct = 0
total = 0
with torch.no_grad():
for batch in test_iterator:
text = batch.text
label = batch.label
output = model(text)
_, predicted = torch.max(output.data, 1)
total += label.size(0)
correct += (predicted == label).sum().item()
accuracy = correct / total
print('Test Accuracy: {:.2f}%'.format(100 * accuracy))
```
请注意,这只是一个示例代码,并且假设你已经准备好了文本数据集并使用TorchText库进行了预处理。你需要根据自己的数据集和需求对代码进行适当的修改和调整。
阅读全文