mp_pose = mp.solutions.pose 在py中什么意思?
时间: 2024-11-09 21:17:10 浏览: 29
在Python中,`mp_pose = mp.solutions.pose` 是一段代码片段,其中 `mp` 很可能是 `mediapipe` 的缩写,Mediapipe 是一个开源跨平台的人工智能库,由 Google 开发,主要用于实时计算机视觉应用,比如人体姿势识别、面部关键点检测等。
`solutions` 是 Mediapipe 中的一个解决方案模块,`pose` 可能是指 Pose Detection(姿态估计),这是`mediapipe`中处理人体关节位置功能的一部分。通过 `mp.solutions.pose`,开发者可以创建一个 PoseEstimation 对象(`mp_pose`),然后利用该对象的 API 来处理图像数据,获得人体各个部位的关键点信息。
例如:
```python
import mediapipe as mp
mp_pose = mp.solutions.pose.Pose(
model_complexity=mp.PoseModelComplexity.SMALL
) # 初始化 pose 解析器,选择小模型提高性能
image = cv2.imread('input.jpg')
results = mp_pose.process(image) # 处理图像获取人体姿态结果
landmarks = results.pose_landmarks # 获取关键点坐标
```
相关问题
import cv2 import mediapipe as mp mp_drawing = mp.solutions.drawing_utils mp_drawing_styles = mp.solutions.drawing_styles mp_holistic = mp.solutions.holistic # For webcam input: filepath='F:\\video000\\ce.mp4' cap = cv2.VideoCapture(filepath) with mp_holistic.Holistic( min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic: while cap.isOpened(): success, image = cap.read() if not success: print("Ignoring empty camera frame.") # If loading a video, use 'break' instead of 'continue'. break # To improve performance, optionally mark the image as not writeable to # pass by reference. image.flags.writeable = False image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) results = holistic.process(image) # Draw landmark annotation on the image. image.flags.writeable = True image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) mp_drawing.draw_landmarks( image, results.face_landmarks, mp_holistic.FACEMESH_CONTOURS, landmark_drawing_spec=None, connection_drawing_spec=mp_drawing_styles .get_default_face_mesh_contours_style()) mp_drawing.draw_landmarks( image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS, landmark_drawing_spec=mp_drawing_styles .get_default_pose_landmarks_style()) # Flip the image horizontally for a selfie-view display. cv2.imshow('MediaPipe Holistic', cv2.flip(image, 1)) if cv2.waitKey(5) & 0xFF == 27: break cap.release() 在这段代码中引入注意力机制,使人体步态特征更好的提取
在这段代码中,要引入注意力机制以提取人体步态特征,可以考虑在Holistic模型的输出结果中使用注意力机制进行加权融合,以强化对关键信息的关注和捕捉。具体操作如下:
1. 在Holistic模型的process()函数中,设置use_attention=True,以启用注意力机制。
2. 在Holistic模型的输出结果中,选择关键的特征点或特征向量,并使用注意力机制进行加权融合,以得到最终的人体步态特征表示。
3. 对特征表示进行进一步的处理和分类,以实现步态识别等应用。
下面是一个示例代码,用于在Holistic模型中引入注意力机制:
```
import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_holistic = mp.solutions.holistic
# For webcam input:
filepath = 'F:\\video000\\ce.mp4'
cap = cv2.VideoCapture(filepath)
with mp_holistic.Holistic(
min_detection_confidence=0.5,
min_tracking_confidence=0.5,
use_attention=True) as holistic:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
break
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = holistic.process(image)
# Extract the key feature points or vectors from the output results.
pose_landmarks = results.pose_landmarks.landmark
face_landmarks = results.face_landmarks.landmark
left_hand_landmarks = results.left_hand_landmarks.landmark
right_hand_landmarks = results.right_hand_landmarks.landmark
# Apply attention mechanism to the key feature points or vectors.
pose_attention = apply_attention(pose_landmarks)
face_attention = apply_attention(face_landmarks)
left_hand_attention = apply_attention(left_hand_landmarks)
right_hand_attention = apply_attention(right_hand_landmarks)
# Combine the attention-weighted feature vectors to form the final gait feature.
gait_feature = np.concatenate([pose_attention, face_attention, left_hand_attention, right_hand_attention])
# Further process and classify the gait feature to achieve gait recognition.
...
# Draw landmark annotation on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
mp_drawing.draw_landmarks(
image,
results.face_landmarks,
mp_holistic.FACEMESH_CONTOURS,
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles
.get_default_face_mesh_contours_style())
mp_drawing.draw_landmarks(
image,
results.pose_landmarks,
mp_holistic.POSE_CONNECTIONS,
landmark_drawing_spec=mp_drawing_styles
.get_default_pose_landmarks_style())
# Flip the image horizontally for a selfie-view display.
cv2.imshow('MediaPipe Holistic', cv2.flip(image, 1))
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
```
其中,apply_attention()函数用于对输入的特征点或特征向量应用注意力机制,可以根据具体需求选择不同的注意力模型和参数。注意力机制的加权融合可以使用numpy库中的矩阵乘法或加法等运算实现。
import cv2 import mediapipe as mp # 初始化mediapipe mp_drawing = mp.solutions.drawing_utils mp_pose = mp.solutions.pose # 初始化摄像头 cap = cv2.VideoCapture(0) with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose: while cap.isOpened(): success, image = cap.read() if not success: print("Ignoring empty camera frame.") continue # 转换图像颜色空间 image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # 执行姿态估计 results = pose.process(image) # 绘制姿态估计结果 image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS, mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2), mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2, circle_radius=2)) # 标注关键点编号 for index, landmark in enumerate(results.pose_landmarks.landmark): height, width, _ = image.shape cx, cy = int(landmark.x * width), int(landmark.y * height) cv2.putText(image, str(index), (cx, cy), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1) # 显示姿态估计结果 cv2.imshow('MediaPipe Pose', image) if cv2.waitKey(5) & 0xFF == 27: break # 释放摄像头资源和窗口 cap.release() cv2.destroyAllWindows()在以上代码基础上加上关键点与相邻关键点的角度
要在以上代码基础上加上关键点与相邻关键点的角度,可以在循环中添加以下代码:
```
# 计算关键点的角度
angles = []
for i in range(len(results.pose_landmarks.landmark)-2):
p1 = results.pose_landmarks.landmark[i]
p2 = results.pose_landmarks.landmark[i+1]
p3 = results.pose_landmarks.landmark[i+2]
angle = mp_pose.PoseLandmark.get_angle(p1, p2, p3)
angles.append(angle)
# 显示角度信息
for i, angle in enumerate(angles):
cv2.putText(image, f"Angle {i+1}: {angle:.2f}", (20, (i+1)*20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
```
这段代码会遍历每个关键点,计算它与相邻的两个关键点之间的角度,并将角度存储在一个列表中。然后,代码会将每个角度信息显示在图像中。其中,`mp_pose.PoseLandmark.get_angle(p1, p2, p3)`函数可以计算由三个关键点组成的夹角。
完整代码如下:
```
import cv2
import mediapipe as mp
# 初始化mediapipe
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
# 初始化摄像头
cap = cv2.VideoCapture(0)
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
continue
# 转换图像颜色空间
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# 执行姿态估计
results = pose.process(image)
# 绘制姿态估计结果
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2, circle_radius=2))
# 标注关键点编号
for index, landmark in enumerate(results.pose_landmarks.landmark):
height, width, _ = image.shape
cx, cy = int(landmark.x * width), int(landmark.y * height)
cv2.putText(image, str(index), (cx, cy), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
# 计算关键点的角度
angles = []
for i in range(len(results.pose_landmarks.landmark)-2):
p1 = results.pose_landmarks.landmark[i]
p2 = results.pose_landmarks.landmark[i+1]
p3 = results.pose_landmarks.landmark[i+2]
angle = mp_pose.PoseLandmark.get_angle(p1, p2, p3)
angles.append(angle)
# 显示角度信息
for i, angle in enumerate(angles):
cv2.putText(image, f"Angle {i+1}: {angle:.2f}", (20, (i+1)*20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
# 显示姿态估计结果
cv2.imshow('MediaPipe Pose', image)
if cv2.waitKey(5) & 0xFF == 27:
break
# 释放摄像头资源和窗口
cap.release()
cv2.destroyAllWindows()
```
阅读全文