not exists如何改成join

时间: 2024-09-07 14:01:07 浏览: 17
`NOT EXISTS` 和 `JOIN` 是SQL查询中的两种不同的技术,它们在某些情况下可以互相转换。`NOT EXISTS` 通常用于检查一个表中是否存在某条记录,使得另一个表中的记录不满足某个条件。而 `JOIN` 则用于联合两个或多个表的数据,通常用于检查两个表中是否存在匹配的记录。 如果你想将 `NOT EXISTS` 转换成 `JOIN` 的形式,可以使用 `LEFT JOIN` 结合 `IS NULL` 来实现。以下是一个基本的转换示例: 假设我们有两个表:`table1` 和 `table2`,我们想找出在 `table1` 中存在但在 `table2` 中不存在的记录,使用 `NOT EXISTS` 的写法可能是这样的: ```sql SELECT * FROM table1 t1 WHERE NOT EXISTS ( SELECT 1 FROM table2 t2 WHERE t2.key = t1.key ); ``` 要将上述查询转换成使用 `JOIN` 的形式,可以写成: ```sql SELECT t1.* FROM table1 t1 LEFT JOIN table2 t2 ON t2.key = t1.key WHERE t2.key IS NULL; ``` 这里,`LEFT JOIN` 会尝试将 `table1` 和 `table2` 中的记录根据 `key` 字段联合起来。由于是左连接,即使 `table2` 中没有与 `table1` 相匹配的记录,`table1` 的记录也会被选出,只是 `table2` 的相关字段会是 `NULL`。`WHERE t2.key IS NULL` 这个条件用来过滤掉那些在 `table2` 中有匹配的记录,从而实现与 `NOT EXISTS` 相同的效果。

相关推荐

替换掉import cv2,将代码import os import numpy as np import nibabel as nib import imageio import cv2 def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation\\" + "segmentation-" + name filepath_vol = niifilepath + "volume\\" + "volume-" +name savepath_seg = savepath + "segmentation\\" savepath_vol = savepath + "volume\\" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片 if silce_seg.max() == 0: continue else: silce_seg = (silce_seg-silce_seg.min())/(silce_seg.max() - silce_seg.min())*255 silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 # 将切片信息保存为png格式 return num if __name__ == '__main__': path= 'E:\\dataset\\LiTS17\\' savepath = 'E:\\dataset\\LiTS17\\2d\\' filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename)改成有相同作用的代码

修改此代码,使其图片路径和保存路径改成LiTS2017数据集的路径为E:\LiTS2017。保存路径为E:\2D-LiTS2017,帮我创建保存图像与标签的文件夹,并且将转换好的数据保存到对应的文件夹。。import os import numpy as np import nibabel as nib import imageio import cv2 def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation\\" + "segmentation-" + name filepath_vol = niifilepath + "volume\\" + "volume-" +name savepath_seg = savepath + "segmentation\\" savepath_vol = savepath + "volume\\" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片 if silce_seg.max() == 0: continue else: silce_seg = (silce_seg-silce_seg.min())/(silce_seg.max() - silce_seg.min())*255 silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 # 将切片信息保存为png格式 return num if __name__ == '__main__': path= 'E:\\dataset\\LiTS17\\' savepath = 'E:\\dataset\\LiTS17\\2d\\' filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename)

zip
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。

最新推荐

recommend-type

基于深度学习的行人分类.zip

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
recommend-type

机械制造工艺学课程设计手柄座设计“手柄座”零件的机械加工工艺规程及工艺装备.doc

机械制造工艺学课程设计手柄座设计“手柄座”零件的机械加工工艺规程及工艺装备.doc
recommend-type

电子设计论文通用红外遥控开关电子设计论文通用红外遥控开关

电子设计论文通用红外遥控开关电子设计论文通用红外遥控开关
recommend-type

软考-信息管理师考试知识汇总思维导图

软考--信息管理师考试知识汇总思维导图,包含项目十大管理领域知识点汇总提取,项目整合管理、项目范围管理、项目时间管理、项目成本管理、项目质量管理、项目人力资源管理、项目沟通管理、项目风险管理、项目采购管理、项目干系人管理等章节所有知识点通过思维导图的形式汇总出来,看图就理解本章所有的知识块以及他们之间的联系。归纳总结,帮助考试复习记忆,加深对 本章节内容的理解。适合时间少,没时间完整看完教材的人,在段时间内帮助理解记性,是考试前冲刺的好帮手。软考高级越来越难考了,为了方便大家能考过,希望大家早点准备,好好考复习资料,多看,多想,多记忆,多思考,多归纳总结。
recommend-type

STM32F103C8T6+CUBEMX+AHT20+中断(DMA)+BT04蓝牙

STM32F103C8T6+CUBEMX+AHT20+中断(DMA)+BT04蓝牙
recommend-type

ExtJS 2.0 入门教程与开发指南

"EXTJS开发指南,适用于初学者,涵盖Ext组件和核心技术,可用于.Net、Java、PHP等后端开发的前端Ajax框架。教程包括入门、组件结构、控件使用等,基于ExtJS2.0。提供有配套的单用户Blog系统源码以供实践学习。作者还编写了更详细的《ExtJS实用开发指南》,包含控件配置、服务器集成等,面向进阶学习者。" EXTJS是一个强大的JavaScript库,专门用于构建富客户端的Web应用程序。它以其丰富的组件和直观的API而闻名,能够创建具有桌面应用般用户体验的Web界面。在本文档中,我们将深入探讨EXTJS的核心技术和组件,帮助初学者快速上手。 首先,EXTJS的组件模型是其强大功能的基础。它包括各种各样的控件,如窗口(Window)、面板(Panel)、表格(Grid)、表单(Form)、菜单(Menu)等,这些组件可以灵活组合,构建出复杂的用户界面。通过理解这些组件的属性、方法和事件,开发者可以定制化界面以满足特定需求。 入门EXTJS,你需要了解基本的HTML和JavaScript知识。EXTJS的API文档是学习的重要资源,它详细解释了每个组件的功能和用法。此外,通过实际操作和编写代码,你会更快地掌握EXTJS的精髓。本教程中,作者提供了新手入门指导,包括如何设置开发环境,创建第一个EXTJS应用等。 EXTJS的组件体系结构是基于MVC(Model-View-Controller)模式的,这使得代码组织清晰,易于维护。学习如何构建和组织这些组件,对于理解EXTJS的工作原理至关重要。同时,EXTJS提供了数据绑定机制,可以方便地将视图组件与数据源连接,实现数据的实时更新。 在EXTJS中,控件的使用是关键。例如,表格控件(GridPanel)可以显示大量数据,支持排序、过滤和分页;表单控件(FormPanel)用于用户输入,可以验证数据并发送到服务器。每个控件都有详细的配置选项,通过调整这些选项,可以实现各种自定义效果。 此外,EXTJS与服务器端的集成是另一个重要话题。无论你的后端是.NET、Java还是PHP,EXTJS都能通过Ajax通信进行数据交换。了解如何使用Store和Proxy来处理数据请求和响应,是构建交互式应用的关键。 为了深化EXTJS的学习,你可以参考作者编写的《ExtJS实用开发指南》。这本书更深入地讲解了EXTJS框架,包括控件的详细配置、服务器集成示例以及一个完整应用系统的构建过程,适合已经掌握了EXTJS基础并希望进一步提升技能的开发者。 EXTJS是一个强大的工具,能够帮助开发者构建功能丰富、用户体验优秀的Web应用。通过本文档提供的教程和配套资源,初学者可以逐步掌握EXTJS,从而踏入这个充满可能的世界。在实践中不断学习和探索,你将能驾驭EXTJS,创造出自己的富客户端应用。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【Java字符串不可变性深度剖析】:影响与应用场景分析

![【Java字符串不可变性深度剖析】:影响与应用场景分析](https://www.edureka.co/blog/wp-content/uploads/2017/05/String-pool-1.png) # 1. Java字符串不可变性的基本概念 Java字符串的不可变性指的是一个字符串对象一旦被创建,其内部的字符序列就不能被改变。这意味着任何对字符串的修改操作,如更改字符、拼接、截取等,都不会影响原始字符串对象,而是会生成一个新的字符串对象。不可变性是Java中String类的一个核心特性,它为Java语言带来了多方面的积极影响,比如线程安全、高效的字符串池管理等。然而,这一特性也并
recommend-type

如何让一个字符串等于一个字符数组

要让一个字符串等于一个字符数组,你可以直接赋值,假设我们有一个字符数组`char strArray[]`和一个字符串`char* myString`,你可以这样做: ```c // 字符数组初始化 char strArray[] = "Hello, World!"; // 将字符串字面量赋给myString char* myString = strArray; // 或者如果你想要创建动态分配的字符串并且需要手动添加终止符'\0', // 可以使用strcpy()函数 size_t len = strlen(strArray); // 获取字符串长度 myString = (char*)
recommend-type

基于TMS320F2812的能量回馈调速系统设计

"基于TMS320F2812的能量回馈调速系统的研发,涉及硬件电路设计、软件设计及Matlab仿真,是理解能量回馈技术的重要资料。" 本文详细探讨了基于TI公司的TMS320F2812 DSP芯片实现的能量回馈调速系统。TMS320F2812是一款高性能的数字信号处理器,适用于实时控制应用,其内置的双事件管理器功能使得双PWM控制得以高效实现,降低了硬件成本并支持复杂控制算法。 在能量回馈的基本原理上,传统的能耗制动方法在变频调速中存在能源浪费、电阻过热以及无法在四象限运行等问题。能量回馈技术则解决了这些问题,它允许变频器在所有四个象限运行,并通过控制整流器和逆变器之间的功率平衡,减小直流储能电容的需求。此外,制动能量被送回电网,提高了系统的整体效率,同时不会对电网质量造成负面影响。 文章首先介绍了能量回馈调速系统的硬件电路设计。主电路采用了两电平电压型双PWM变换器架构,包含网侧电抗器、PWM整流器、直流环节和PWM逆变器。PWM整流器在电机减速时将电机产生的机械能转化为电能,并通过逆变器将其反馈到电网。直流母线电压检测、电流检测、同步电路和温度检测电路等辅助电路确保了系统稳定运行和安全。 接下来,文章阐述了系统的控制策略和软件设计。通过DSP芯片,可以执行实时的控制算法,实现精确的电压和电流控制,确保能量有效回馈。软件设计包括了对电机状态的监控、PWM信号的生成以及各种保护机制的编程。 最后,作者进行了Matlab仿真实验,通过仿真波形验证了设计的有效性。实验结果表明,基于TMS320F2812的系统能够实现能量回馈,且动态性能良好。尽管国际上已有类似的四象限运行变频器和再生装置,但考虑到价格和电网适应性,本设计提供了更经济、更适合中国国情的解决方案。 这篇文章为读者提供了一个深入理解能量回馈技术以及如何利用TMS320F2812 DSP实现这一技术的实例,对于从事相关领域的工程师和技术人员来说,是一份有价值的参考资料。