能否提供一份用Python编写的,专为多区域(Multiple ROI)间质性肺病(ILD)特征提取设计的代码示例?
时间: 2024-10-28 15:08:49 浏览: 7
对于多区域间质性肺病(ILD)的特征提取,你需要先确定每个ROI(Region of Interest,感兴趣区),这通常涉及到图像分割。以下是一个简化版的Python代码,使用了`skimage`库进行分割和特征计算。请注意,实际应用中可能需要更复杂的算法,例如深度学习模型。
```python
from skimage import measure, filters, io, draw
import numpy as np
# 读取CT图像
def load_ct_image(path, window_level=(400, 800)):
img = io.imread(path, as_gray=True)
img = (img - window_level[0]) / (window_level[1] - window_level[0])
return img
# 多区域分割
def multi_roi_segmentation(img, regions_of_interest):
labeled_image, num_labels = measure.label(img, background=0)
segmentation_masks = []
for region_id in regions_of_interest:
mask = np.zeros_like(labeled_image)
rr, cc = draw.circle_perimeter(region_id, labeled_image.shape)
mask[rr, cc] = 1
segmentation_masks.append(mask)
return labeled_image, segmentation_masks
# 对每个ROI提取特征
def extract_features(roi_mask, img):
filtered_img = filters.median(img, footprint=np.ones((3, 3)))
roi_filtered_img = filtered_img * roi_mask
mean_intensity = roi_filtered_img.mean()
std_deviation = roi_filtered_img.std()
# 添加更多特性,如纹理、边缘信息等
return {'mean_intensity': mean_intensity, 'std_deviation': std_deviation}
# 使用示例
image_path = 'path_to_your_CT_scan.png'
regions_of_interest = [100, 200] # 根据实际情况设置ROI坐标
img = load_ct_image(image_path)
labeled_image, masks = multi_roi_segmentation(img, regions_of_interest)
features_list = []
for i, mask in enumerate(masks):
features = extract_features(mask, img)
features['region'] = i
features_list.append(features)
# 结果存储为DataFrame
results_df = pd.DataFrame(features_list)
print(results_df)
```
阅读全文