前馈神经网络与全连接层
时间: 2024-04-19 12:21:22 浏览: 262
前馈神经网络
前馈神经网络(Feedforward Neural Network)是一种最基本的神经网络模型,也被称为多层感知机(Multilayer Perceptron,MLP)。它由输入层、隐藏层和输出层组成,信息在网络中只能向前传播,不会进行反馈。
全连接层(Fully Connected Layer),也称为密集连接层或者全连接层,是前馈神经网络中的一种常见层类型。在全连接层中,每个神经元与上一层的所有神经元都有连接,每个连接都有一个权重。全连接层的输出是通过对输入进行加权求和,并通过激活函数进行非线性变换得到的。
前馈神经网络通过多个全连接层的堆叠来实现复杂的非线性映射关系。每个全连接层都可以看作是对输入数据进行特征提取和转换的过程。隐藏层中的神经元可以学习到输入数据中的高级特征,最终输出层的神经元则根据这些特征进行分类、回归等任务。
前馈神经网络和全连接层在深度学习中扮演着重要的角色。它们可以通过反向传播算法进行训练,不断调整权重和偏置值,以最小化损失函数,从而实现对输入数据的有效建模和预测。
阅读全文