dataframe多级索引取值
时间: 2023-09-13 17:06:43 浏览: 117
7.DataFrame -多重索引
回答: 在DataFrame中,可以使用多级索引来取值。通过指定多级索引的行和列,可以获取特定的值。例如,假设有一个名为df的DataFrame,其中包含多级索引。要获取特定的值,可以使用以下语法:df.loc\[(level1, level2), (level3, level4)\]。其中,level1和level2是第一级和第二级索引的值,level3和level4是第三级和第四级索引的值。这样就可以获取到对应的值。\[1\]例如,如果要获取df中索引为'a',第一级索引为1的行的'data1'列的值,可以使用df.loc\[('a', 1), 'data1'\]。\[1\]另外,如果想要将一个多级索引的Series转换为普通索引的DataFrame,可以使用unstack()方法。这样可以快速将多级索引的Series转换为普通索引的DataFrame。\[2\]如果想要获取DataFrame中特定列的多级索引的值,可以使用类似于Series的语法,即使用列名和多级索引的元组来获取值。例如,假设有一个名为health_data的DataFrame,其中包含多级索引。要获取'Guido'列中'HR'索引的值,可以使用health_data\['Guido', 'HR'\]。\[3\]
#### 引用[.reference_title]
- *1* *2* *3* [第1关:多级索引的取值与切片](https://blog.csdn.net/qq_65077162/article/details/124719218)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文