2.c 中为Hanio 问题的递归求解函数。观察一下操作的结果。 gcc -ch1.c gCc -c h2.c gcc -o h1.c gCc -o h1.c h2.c gCc -o h1.o h2.0
时间: 2024-09-29 11:01:23 浏览: 35
hanio(T).rar_hanio_汉诺塔_汉诺塔 VC++_汉诺塔-递归算法
在 C 语言中,为 Hanio 问题编写递归求解函数通常涉及数学问题,例如汉诺塔问题,它是一个经典的递归问题,目标是在移动盘子的过程中遵守规则,即任何时候只能移动一个盘子,且大盘子不能放在小盘子上。
假设我们有一个 `hanoi.c` 文件,其中包含了如下的递归函数:
```c
void hanoi(int n, char from_rod, char to_rod, char aux_rod) {
if (n > 0) {
// 递归地移动 n-1 个盘子
hanoi(n - 1, from_rod, aux_rod, to_rod);
// 移动当前的大盘子
printf("Move disk %d from rod %c to rod %c\n", n, from_rod, to_rod);
// 递归地移动剩下的 n-1 个盘子
hanoi(n - 1, aux_rod, to_rod, from_rod);
}
}
// 主函数调用
int main() {
int num_disks = 3; // 修改这里的数值来改变问题规模
hanoi(num_disks, 'A', 'C', 'B'); // A、B、C 分别代表三个柱子
return 0;
}
```
执行上述步骤:
1. `gcc -c h2.c`:这里实际上是指 `gcc` 编译器将 `h2.c` (假设已更改为 `hanoi.c`)文件编译成一个未命名的.obj或.o(取决于操作系统)的目标文件。
2. `gcc -o h1.c`:这一步将 `h1.c` 作为主文件编译,如果没有指定其他源文件,则可能会报错,因为 `h1.c` 似乎并未包含 `main()` 函数。
3. `gcc -o h1.c h2.c`:这一行应更正为 `gcc -o h1 h1.c h2.c`,因为我们在 `main()` 函数里使用 `hanoi()` 函数,所以需要将 `hanoi.c` 添加到链接过程中。如果执行此步,会生成一个可执行文件 `h1`。
4. `gCc -o h1.o h2.0`:这个命令语法错误,应该是直接编译源文件而不是目标文件。正确的做法是使用 `gcc`,而不是 `gCc`。同时,目标文件名也不应带有 `.0`。正确的方式可能是 `gcc -o h1 h1.o h2.o`,前提是已经正确地编译了 `h2.c` 并生成了对应的 `.o` 文件。
当你运行生成的 `h1` 文件时,它会按照汉诺塔问题的规则逐次移动盘子。观察输出可以看到每次移动的盘子编号以及它们从哪根柱子移到了哪根柱子。
阅读全文