Nanohole induced microfiber Bragg gratings
Ping Zhao,
1
Yuhua Li,
1,*
Jihua Zhang,
1
Lei Shi,
1
and Xinliang Zhang
1,2
1
Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong
University of Science and Technology, Wuhan 430074, China
2
xlzhang@mail.hust.edu.cn
*oeyhli@gmail.com
Abstract: We demonstrate the fabrication of high-index-contrast microfiber
Bragg gratings (MFBGs) using phase-mask technique under seconds’
femtosecond laser ablation to drill periodic nanoholes in microfibers and
study the aging properties of the gratings at room temperature. These sub-
micrometer-diameter holes, benefited from the resolution of femtosecond
laser micromachining beyond-diffraction limit, results in an effective
negative refractive index change Δn ~-10
−3
. Transmission dips over −23 dB
are achieved for the gratings with excellent Gaussian apodization and 3-dB
reflection bandwidths up to 1.14 nm. Moreover, the grating reflectivity
increased by 3 dB, the resonant wavelength blue-shifted 1.35 nm after two
weeks’ placement of grating at room temperature and these gratings exhibit
excellent stability in the following time. This makes them attractive
elements in sensing, nanophotonics and nonlinear optics.
©2012 Optical Society of America
OCIS codes: (060.3735) Fiber Bragg gratings; (230.3990) Micro-optical devices; (220.4241)
Nanostructure fabrication.
References and links
1. A. O. K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing
(Artech House, 1999).
2. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
3. Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-
index contrast,” Opt. Lett. 36(16), 3115–3117 (2011).
4. K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity
formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19(15), 14040–
14050 (2011).
5. M. Ding, M. N. Zervas, and G. Brambilla, “A compact broadband microfiber Bragg grating,” Opt. Express
19(16), 15621–15626 (2011).
6. Y. Zhang, B. Lin, S. C. Tjin, H. Zhang, G. Wang, P. Shum, and X. Zhang, “Refractive index sensing based on
higher-order mode reflection of a microfiber Bragg grating,” Opt. Express 18(25), 26345–26350 (2010).
7. Y. Ran, Y.-N. Tan, L.-P. Sun, S. Gao, J. Li, L. Jin, and B.-O. Guan, “193 nm excimer laser inscribed Bragg
gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
8. R. Ahmad, M. Rochette, and C. Baker, “Fabrication of Bragg gratings in subwavelength diameter As2Se3
chalcogenide wires,” Opt. Lett. 36(15), 2886–2888 (2011).
9. R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and Bragg grating inscription in As(2)Se(3)
chalcogenide microwires,” Appl. Phys. Lett. 99(6), 061109 (2011).
10. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for
refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
11. Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-Efficiency Ultraviolet Inscription of Bragg
Gratings in Microfibers,” IEEE Photon. J. 4(1), 181–186 (2012).
12. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2(4), 275–289 (2008).
13. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4),
219–225 (2008).
14. C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR
laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
15. J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc.
Am. A 11(4), 1307–1320 (1994).
16. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
Received 27 Sep 2012; revised 14 Nov 2012; accepted 15 Nov 2012; published 10 Dec 2012
17 December 2012 / Vol. 20, No. 27 / OPTICS EXPRESS 28625