MATLAB图像处理:灰度均衡化应对亮度变化
需积分: 48 136 浏览量
更新于2024-07-11
收藏 13.24MB PPT 举报
本篇MATLAB图像处理教程详细介绍了在图像变亮或变暗后的灰度均衡化方法,以及一系列与之相关的图像处理技术。首先,讲解了图像的基本操作,包括:
1. 图像的读取与显示:
- 使用`imread`函数读取图像文件,例如`I_1=imread('D:\10.06.08nir\TTC10377.BMP')`,并能通过`imshow`函数展示图像,并设置灰度范围。
- `figure`和`subplot`用于在不同窗口显示多个图像。
2. 图像的格式转换:
- `im2bw`函数用于将图像转换为二值图像,`rgb2gray`则将RGB图像转为灰度图像,`im2uint8`将图像转换为整数型,`im2double`转换为双精度浮点型。
- 阈值法通过`im2bw`或`imthreshold`函数创建二值图像,通过指定的灰度级`LEVEL`进行分割。
3. 图像的点运算:
- 灰度直方图是关键工具,它提供了图像灰度级分布的统计信息,对于图像分割、灰度变换等处理至关重要。直方图描绘每个灰度级像素的频数或概率,通过`imhist`函数计算。
4. 图像增强:
- 分为空间域增强和频率域增强。空间域增强包括但不限于灰度均衡化,这有助于改善图像对比度,使图像中的细节更加明显。具体操作没有详细列出,但可能涉及直方图均衡化、自适应直方图均衡化等方法。
- 频率域增强通常通过傅里叶变换(如`fft`)操作来提高图像质量,如去噪、滤波等。
5. 彩色图像处理:
虽然题目未提及具体步骤,但MATLAB支持对彩色图像进行处理,如色彩空间转换、色彩校正等。
6. 形态学图像处理和图像分割:
这些技术用于细化或细化图像结构,以及根据特定规则分离图像为不同的区域。
7. 特征提取:
提取图像中的关键特征,如边缘检测、角点检测等,为后续的机器学习或计算机视觉任务做准备。
8. 图像的几何变换:
可能包括旋转、缩放、平移等操作,改变图像的空间布局。
本教程重点在于基础图像操作和预处理技术,特别是灰度均衡化,旨在帮助读者理解和掌握如何使用MATLAB对图像进行调整和增强,以便于后续的分析和应用。
2019-08-12 上传
285 浏览量
2023-04-26 上传
点击了解资源详情
2021-05-30 上传
2021-06-01 上传
2021-05-23 上传
2021-05-30 上传
2010-03-11 上传
花香九月
- 粉丝: 27
- 资源: 2万+
最新资源
- BottleJS快速入门:演示JavaScript依赖注入优势
- vConsole插件使用教程:输出与复制日志文件
- Node.js v12.7.0版本发布 - 适合高性能Web服务器与网络应用
- Android中实现图片的双指和双击缩放功能
- Anum Pinki英语至乌尔都语开源词典:23000词汇会话
- 三菱电机SLIMDIP智能功率模块在变频洗衣机的应用分析
- 用JavaScript实现的剪刀石头布游戏指南
- Node.js v12.22.1版发布 - 跨平台JavaScript环境新选择
- Infix修复发布:探索新的中缀处理方式
- 罕见疾病酶替代疗法药物非临床研究指导原则报告
- Node.js v10.20.0 版本发布,性能卓越的服务器端JavaScript
- hap-java-client:Java实现的HAP客户端库解析
- Shreyas Satish的GitHub博客自动化静态站点技术解析
- vtomole个人博客网站建设与维护经验分享
- MEAN.JS全栈解决方案:打造MongoDB、Express、AngularJS和Node.js应用
- 东南大学网络空间安全学院复试代码解析