统计学习要素:数据挖掘、推断与预测(第二版)

5星 · 超过95%的资源 需积分: 39 41 下载量 97 浏览量 更新于2024-07-22 2 收藏 12.16MB PDF 举报
"《The Elements of Statistical Learning-Data Mining, Inference, and Prediction》是Springer出版的一本统计学习领域的经典教材,由Trevor Hastie、Robert Tibshirani和Jerome Friedman三位作者共同撰写。这本书是机器学习领域的权威著作,主要探讨数据挖掘、推断和预测的方法。第二版在第一版的基础上进行了更新,增加了四个新章节,并对原有章节做了相应修订。" 在数据科学和机器学习的世界里,《The Elements of Statistical Learning》是不可或缺的参考资料,它深入浅出地阐述了统计学习的核心概念和技术。这本书旨在连接理论与实践,为读者提供理解和应用这些方法的坚实基础。 新增的四个章节可能涵盖了近年来在机器学习领域取得的重要进展,可能包括深度学习、集成学习、强化学习或非线性模型等前沿话题。作者们在保持原有结构的同时,对已有章节进行更新,确保了教材的时效性和实用性。例如,可能对支持向量机(SVM)、随机森林(Random Forest)、梯度提升(Gradient Boosting)等算法进行了更深入的解析,以及在大数据背景下统计学习的新挑战和解决方案。 书中引用了William Edwards Deming的名言“我们只相信上帝,其他人必须带来数据”,强调了数据在决策过程中的重要性。这反映了现代统计学和机器学习的核心理念:通过数据驱动的分析和模型构建来洞察世界并做出预测。 《The Elements of Statistical Learning》不仅适合于学术界的研究人员,也适用于工业界的数据科学家和工程师。书中丰富的理论分析和实例演示,使得读者可以理解复杂的统计模型并应用于实际问题中。通过阅读此书,读者将能掌握如何从海量数据中提取有价值的信息,进行有效的推断,并构建可靠的预测模型。 这本书是机器学习和统计学领域的一部巨著,对于想要深入理解和掌握这一领域的专业人士来说,是一份不可多得的参考资料。它的第二版在保持原有精华的基础上,进一步拓展了知识边界,使其更贴近当前的技术发展趋势。
2018-04-27 上传
统计学习数据挖掘推理和预测的要素 This is page v Printer: Opaque this To our parents: Valerie and Patrick Hastie Vera and Sami Tibshirani Florence and Harry Friedman and to our families: Samantha, Timothy, and Lynda Charlie, Ryan, Julie, and Cheryl Melanie, Dora, Monika, and Ildiko vi This is page vii Printer: Opaque this Preface to the Second Edition In God we trust, all others bring data. –William Edwards Deming (1900-1993)1 We have been gratified by the popularity of the first edition of The Elements of Statistical Learning. This, along with the fast pace of research in the statistical learning field, motivated us to update our book with a second edition. We have added four new chapters and updated some of the existing chapters. Because many readers are familiar with the layout of the first edition, we have tried to change it as little as possible. Here is a summary of the main changes: 1On the Web, this quote has been widely attributed to both Deming and Robert W. Hayden; however Professor Hayden told us that he can claim no credit for this quote, and ironically we could find no “data” confirming that Deming actually said this. viii Preface to the Second Edition Chapter What’s new 1. Introduction 2. Overview of Supervised Learning 3. Linear Methods for Regression LAR algorithm and generalizations of the lasso 4. Linear Methods for Classification Lasso path for logistic regression 5. Basis Expansions and Regulariza- Additional illustrations of RKHS tion 6. Kern